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Abstract

Background: A gene regulatory network (GRN) comprises many weak links that are often regulated by microRNAs.
Since miRNAs rarely repress their target genes by more than 30%, doubts have been expressed about the
biological relevance of such weak effects. These doubts raise the possibility of under-estimation as miRNA
repression is usually estimated indirectly from equilibrium expression levels.

Results: To measure miRNA repression directly, we inhibited transcript synthesis in Drosophila larvae and collected
time-course data on mRNA abundance, the decline of which reflects transcript degradation. The rate of target
degradation in the absence of miR310s, a moderately expressed miRNA family, was found to decrease by 5 to 15%.
A conventional analysis that does not remove transcript synthesis yields an estimate of 6.5%, within the range of
the new estimates. These data permit further examinations of the repression mechanisms by miRNAs including
seed matching types, APA (alternative polyadenylation) sites, effects of other highly-expressed miRNAs and the
length of 3’UTR. Our direct measurements suggest the latter two factors have a measurable effect on decay rate.

Conclusion: The direct measurement confirms pervasive weak repression by miRNAs, supporting the conclusions
based on indirect assays. The confirmation suggests that this weak repression may indeed be miRNAs’ main
function. In this context, we discuss the recent proposal that weak repression is “cumulatively powerful” in
stabilizing GRNs.
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Background
In any gene regulatory network (GRN), there is a small
percentage of gene-to-gene interactions whereby the regu-
latory gene (usually a transcription factor, TF) up- or
down-regulates its target genes by several fold, often mea-
sured using ChIP-seq -type analyses [1, 2]. The phenotypic
consequences and functional significance of such strong
interactions have been extensively documented [3, 4]. In
contrast, a different group of regulatory molecules, namely
the microRNAs (miRNAs), repress hundreds of targets
per miRNA weakly and broadly [5–7] in the GRNs of
metazoans. Each miRNA binds mainly to the 3′ untrans-
lated regions (3’UTR) of target transcripts that have a

sequence matching the 7–8 bp seed region of the miRNA.
The binding induces transcript degradation and/or trans-
lational inhibition [5, 8–10].
The broad and weak repression by miRNAs has been a

central conundrum in the control of GRNs. A view that has
been increasingly supported is the “few targets” hypothesis
[11–14]. In this view, only the most strongly repressed
targets are biologically meaningful. In some cases, a single
gene (such as the let-7 miRNA) is believed to repress a
single target (lin-41) to yield a dramatic phenotypic
consequence [12]. In contrast, Hunter et al. (2013), analyz-
ing the same let-7 miRNA and the same phenotype in the
same species, reach the opposite conclusion [15]. They sug-
gest that more than 20 target genes are involved in control-
ling the vulva phenotype. At the center of the debate is the
two aspects of the same issue: First, is there a single
regulator-target interaction that is strong enough to exert a
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phenotypic effect? Second, if not, then what might be the
functions of all those weak interactions?
Liufu et al. (2017) have recently shown that each regu-

latory molecule (miR310s in this case) governs the same
phenotype through multiple targets incoherently [16].
For example, miR310s enhances egg hatchability by
repressing the Mad target gene but reduces hatchability
via three other targets, E2f2, EcR, and Mef2. They con-
clude that the many weak repressions function to
stabilize the phenotype. If the task is to correct any devi-
ations from the norm, weak effects should suffice. Chen
et al. (2017; in review but posted on BioRxiv) introduces
the May-Wigner theory used in studying food web sta-
bility to the analysis of GRNs [17]. They conclude that
the weak miRNA regulatory effects are cumulative. Re-
pression each of 50 targets by 1% has a greater effect on
system stability than repression of one target gene by
50% in their simulations.
At the heart of the debate, theoretical arguments, and

empirical tests is the assertion that miRNAs indeed
weakly repress many targets. However, this conclusion is
based on indirect measurements. When an miRNA is
deleted, it is generally observed that the expression of
predicted target genes increases [5]. However, the in-
crease is usually very modest. It is often less than 20%
for even highly-expressed miRNAs [18, 19], and even
smaller for the less expressed molecules [20]. Such weak
effects have led to two different views. In one view, the
pervasive weak expression is biologically real as miRNAs
exert their influence through the entire RNA:RNA net-
work. Weak effects function cumulatively at the systems
level [21–24].
In contrast, as one of the conventional explanations,

the weak repression could be the result of biased mea-
surements [25–30]. It is sometimes suggested that miR-
NAs’ effects should be measured at the level of proteins,
not mRNAs [31–33]. Several studies address this issue
directly [34–37] and report that mRNA and protein
measurements are reasonably well correlated. Given this
correlation, it seems unlikely that weak repressions of,
say, 10% at the mRNA level would be translated into
strong repressions of, say, 50% at the protein level.
In this study, we further explore the possibility that

miRNA effects are under-estimated. Previous estimates
are affected by both mRNA synthesis and degradation.
Therefore, the rate of degradation could potentially be
severely under-estimated if the two processes are inter-
dependent as several studies have concluded [38–40].
Here, we measure miRNA target degradation directly by
turning off transcription using Actinomycin D (ActD), a
widely-used chemical for transcription inhibition [41].
We took care to apply the drug only for a short duration
and monitored larval viability to reduce the likelihood of
side effects.

The miR310 cluster (miR310s) of D. melanogaster is
chosen for this study because its function, especially in the
context of evolution in Drosophila, has been analyzed in
some detail [42–46]. The mid-level expression level of this
cluster [47, 48] also makes it a suitable candidate for
addressing the estimation of miRNA repression levels.

Results
I. Theory
Let xi(t) denote the mRNA concentration of a miRNA target
gene at time t. When the system is at an equilibrium, dxidt ¼ 0
(also dxj/dt = 0 for all other genes j). Near equilibrium, we
approximate transcript change by a linear system. For gene i,
the system is described by the following equation (Eq.)

dxi=dt ¼ Bi–Dixi ð1Þ
where Bi (= bi + Si) is the synthesis rate and Di (= di +mi) is
the degradation rate.
Here, bi is the presumably constant basal transcription

rate and

Si ¼
XN

j¼1; j≠i
aijxj ð2Þ

is the aggregate effect of other genes on gene i with aij
being the regulation strength of gene i by gene j. Further,
di is the degradation rate of transcript i in the absence of
a matching miRNA and mi is the added degradation due
to miRNA action. At equilibrium, Xi = Bi/Di where the
capital letter indicates the equilibrium value. The
equations can also be applied to the genetic background
where the regulatory miRNA is deleted. In that back-
ground, Xi*, Bi* and Di* are substituted into Eqs. (1–2)
and Xi* = Bi*/di (note that Di* = di).
To quantify the repression effect of miRNAs, one would

compare the two equilibrium values, Xi (= Bi/Di) vs. Xi*
(= Bi*/di). It is usually assumed that Bi/Bi* ~ 1. Hence, if
Xi*/ Xi = 1.1, the interpretation is that Di/di = (di +mi)/di
= 1.1 and mi is said to increase the degradation by about
10%. In reality, the ratio of Bi/Bi* is nearly impossible to
quantify because Bi and Bi* both contain the summation
term of Eq. (2), where xj’s and xj*‘s are very likely different.
An incorrect assumption of Bi/Bi* ~ 1 could thus lead to
potentially serious under-estimation of miRNAs repres-
sion activity. For example, if Xi*/ Xi = 1.1 and Bi/Bi* = 2,
then (di +mi)/di = 2.2. In that case, the miRNA actually in-
creases degradation by 120% instead of 10%.
Given that the confounding factor of Bi/Bi* cannot be es-

timated, we apply an Actinomycin D (ActD) solution to in-
hibit transcription, making Bi = Bi* = 0. Eq. (1) is reduced to

dxt=dt ¼ ‐ dþmð Þ xt ð3Þ
dxt

�=dt ¼ ‐d xt
� ð4Þ

in the wild-type (WT) and knockout (KO) background,
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respectively. As we only deal with gene i but at different
time points, the subscript i is replaced by t. xt is mea-
sured by RNA-Seq at different time points after ActD is
administered as described below.

II. Direct vs. indirect measurement of transcript decay
Transcription shutdown in vivo in Drosophila larvae
ActD is the standard reagent to repress both rRNA and
mRNA synthesis [49, 50]. We chose the L3 stage during
larval development for transcription repression because
larvae appear to be able to withstand ActD treatment for
8 h without dying. When L3 larvae are immersed in an
80 μg/ml of ActD solution for 8 h, all larvae remain vi-
able and do not appear to show obvious abnormalities.
To ensure that a sufficient concentration of ActD is ad-
ministered without causing undue damage to the cells, a
preliminary experiment was done using a gradient of
ActD concentration. As ActD affects rRNA synthesis at
a much lower concentration than it affects mRNA syn-
thesis, we expect the proper ActD concentration suffi-
cient to disrupt mRNA production should lead to
difficulties in pupation and eclosion. We chose 80 μg/ml
for which the eclosion rate is still appreciable, more than
10% of the normal rate. In either the WT or miR310s-
KO background, xt is measured by RNA-Seq at 4 time
points: 0, 2, 4, and 8 h after ActD is administered at the

pre-determined concentration. A high between-replicate
correlation was observed (Additional file 1: Figure S1).
On the basis of Eqs (3) and (4), we obtain

ln xtð Þ ¼ ln B=Dð Þ– dþmð Þ t ð5Þ
ln xt

�ð Þ ¼ ln B�=dð Þ– dð Þ t: ð6Þ
When ln (xt) or ln (xt*) is plotted against t (see

Methods), the regression slope is d +m in the WT or d
in the knock-out background. Plots of three representa-
tive transcripts including two miR310s non-target and
one target gene are given in Fig. 1a-c. Note that the
intercept in each panel is not informative because the
intercept, unlike the slope, depends on the calibration of
xt’s (see legends for detail).
The distribution of the decay rate D (= d +m) in the

WT background is given in Fig. 1d. In computing the dis-
tribution, we restrict the analysis to 4500 most highly-
expressed transcripts to control for the uncertainty in esti-
mating D for weakly expressed genes. The distribution has
a long tail on the right indicating that a fraction of tran-
scripts do decay with extreme rapidity. Because the corre-
sponding distribution of D* (=d) in the knockout
background exhibits the same trend (Fig. 1d), the analysis
suggests that the rapid decay is not a consequence of
miRNA action. Furthermore, there exists a small fraction

Fig. 1 Degradation plots of (a-b) two untargeted transcripts, (c) one miR310s targeted transcript and (d) all transcripts. The expression level at 0 h is
adjusted to 1. D is estimated by fitting the exponential model with log transformed normalized expression values. The slope corresponds to the decay rate
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of transcripts that decay at an exceptionally low rate. This
can be seen if we plot the distribution of half-life of all
transcripts (t1/2 = ln2/D) as shown in Additional file 2:
Figure S2. The tail to the right indicates exceptionally slow
decay. The degree of kurtosis seen in the combined
Fig. 1d and Additional file 2: Figure S2 could make the
comparison of two distributions (in the WT vs. KO back-
ground) more difficult to interpret because the outliers
might exert strong influence on the mean and median.

Transcripts with high and low decay rate
We identify 200 most unstable and stable transcripts in the
WT line and perform a Gene Ontology (GO) term enrich-
ment analysis. The genes coding for unstable transcripts
are disproportionally involved in development of the larval
cuticle (Additional file 3: Table S1). This is consistent with
the observations that numerous proteins degrade rapidly
during larval development after chitin synthesis is inhibited
[51]. By contrast, the stable transcripts tend to be impli-
cated in translation (Additional file 4: Table S2),
consistent with previous results [52–55].

We hypothesize that the fast decay of unstable transcripts
is induced by AU-rich elements (ARE), GU-rich elements
(GRE) and U-rich elements (URE), which are targeted by
the RNA binding protein (RBP) [56–60]. Consistently,
decay rates of mRNAs encoding these elements are sta-
tistically marginally higher than the remaining mRNAs
in the WT line (Wilcoxon rank sum test, P = 0.09,
Additional file 5: Figure S3). This pattern is much more
pronounced in the KO line (P = 8.8 × 10− 15). The difference
between two genetic backgrounds could be due to the fact
that miR310s target three RBPs including Rb97D, CG4119,
and CG4896. When miR310s are knocked out, RBPs get
upregulated (Additional file 6: Table S3) and transcripts
encoding elements like ARE are degraded even faster.

The decay rate of targets in the WT vs. KO background
To quantify the contribution of miRNAs to transcript deg-
radation (i.e., mi’s), we identify 292 miR310s targets (see
Methods). We measure the repression effect of miR310s by
the equilibrium value - Xi (= Bi/Di) vs Xi* (= Bi*/di) (Fig. 2a).
Indeed, the distribution of Xi* is shifted to the right

Fig. 2 Distribution of the equilibrium expression and degradation change of 3’UTR targets between miR310s WT and KO. Targets’ degradation
rates were normalized by the mode of the background decay rate. The median of equilibrium expression value is 15.3 for WT and 16.3 for KO.
The degradation rate median value is 1.16 for WT and 1.11 for KO. (a) The cumulative distribution of equilibrium expression change. (b) The
cumulative distribution of degradation change. (c) The contour distribution of miR310s targets’ degradation between WT and KO. Here, we
performed a 2D kernel density estimation with an axis-aligned bivariate normal kernel, evaluated on a square grid and displaying the results with
contours. The line indicates the contour estimated by the density of points. The red dot marks the densest point (1.04, 0.91). Strongly modulated
target genes tend to be in the “high” or “long” group, which account for > 80% of the outliers
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suggesting higher expression of the target transcripts when
the miR310s cluster is removed. The median value shows a
6.5% (=16.3/15.3–1) increase, confirming earlier suggestions
of weak repression by miR310s.
We then examine cumulative distributions of Di (= mi

+ di, in the WT background) vs. di (in the KO back-
ground, Fig. 2b). The distribution of Di is shifted to the
right, as expected. However, the shift is even smaller
than in Fig. 2a. In Fig. 2b, the median values are 1.16
and 1.11, respectively. The increase contributed by mi is
only 4.50% (=1.16/1.11–1). Therefore, if we consider the
median, the direct measurement of miRNA repression is
smaller than the indirect measurement of miRNA effect
based on equilibrium expression.
The analysis of the median in Fig. 2 corroborates the

general view of weak repression by miRNAs. Nevertheless,
the long tail of the decay distribution (Fig. 1d) makes it
difficult to assess the population effect robustly. While the
median is a conventional choice, we also considered the
mode of the distribution as an additional inference statis-
tic. Fig. 2c shows that the distribution of di and mi + di
values where the contour plot reveals the densest concen-
tration of points centers on (1.04, 0.91). This analysis is

feasible because the degradation measurements among
the 292 target transcripts are clustered relatively tightly
and within the same order of magnitude, and the distribu-
tion is unimodal. Thus, using the distribution mode as the
statistic, the overall degradation increase contributed by
miR310s may be as high as 14.3% (1.04/0.91–1). To make
sure our conclusion does not depend on specific bioinfor-
matics parameters, we re-defines miR310s targets using D.
yakuba, a more diverged outgroup species. Our observa-
tions remain essentially unchanged (Additional file 7:
Figure S4).
We next checked if mi310s sites in coding sequences (in

addition to the already considered 3’-UTRs) affect our con-
clusions. Such sites have been found to be functional before
[61]. Analogous to the procedure for 3’-UTR targets, we ex-
tracted targets conserved in CDSs across D. melanogaster
and D. simulans and examine both equilibrium and degrad-
ation change. The median equilibrium value of WT and
KO is 13.0 and 14.6, respectively (Fig. 3a). That is, the in-
crease is 12.3% (14.6/13.0–1). Correspondingly, the median
degradation decrease is 11.4% (1.17/1.05–1) (Fig. 3b).
However, the densest point in the contour plot shows that
the degradation change is roughly − 2.0% (0.99/1.01–1)

Fig. 3 Distribution of the CDS target equilibrium expression and degradation change between miR310s WT and KO. The median degradation
rate is 1.17 for WT and 1.05 for KO. (a) The cumulative distribution of equilibrium expression change. (b) The cumulative distribution of
degradation change. (c) The contour distribution of miR310s targets’ degradation between WT and KO. The red dot on the contour plot marks
the densest point (0.99, 1.01). Strongly modulated target genes tend to be in the “high” or “long” group, which account for > 80% of the outliers
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(Fig. 3c). Thus, miR310s changes degradation of CDS tar-
gets is about − 2.0% ~ 11.4%, which appears weaker than
transcripts with binding sites in 3’ UTRs (4.5%~ 14.3%).
In summary, the degradation effect contributed by

miR310s as measured the direct assay on transcripts
with 3’-UTR binding sites is between 5 and 15% whereas
the effect estimated from equilibrium expression is 6.5%.
In the previous section, it was suggested that the two es-
timates might differ by as much as 10-fold (10 to 120%)
due to the confounding factor of new transcript synthe-
sis. Such a possibility is ruled out by this study. Given
the weaker effect of targets in CDS, this possibility is
even smaller for these targets.

III. Degradation factors other than miR310s
Transcripts targeted by miR310s at their 3’ UTRs differ
in the number of target sites, matching types (i.e., 8mer-
1a, 7mer-1a and 7mer-m8), alternative polyadenylation
(APA), whether they are also co-targeted by other miR-
NAs, and the length of UTRs. Since all of these factors
may affect degradation [62–65] we performed a series of
binary analyses to test their potential effects.
First of all, since 90% of the targeted transcripts harbor

only one miRNA site, we group them by matching types.
Equilibrium expression gradually increases in the KO line
according to the following order: 8mer-1a (15.1%), 7mer-1a
(13.4%), and 7mer-m8 (11.9%) (Fig. 4a). Accordingly, deg-
radation decreases by 9.4, 5.8, and 4.8%, respectively. Al-
though the difference between groups is not significant, the
trend is consistent with previous reports where 8mer-1a
sites exert stronger repression intensity than 7mer-1a and
7mer-m8 [66, 67]. (We note that Figs. 2 and 4 use different
statistics due to the nature of data partitioning. Figure 2
shows the difference in the median values of the control vs.
KO lines whereas Fig. 4 shows the median value of the
control-KO differences. The different treatments lead to
the same conclusion.)
To determine whether a target can be subject to APA,

we looked for the presence of the canonical polyadenyla-
tion site AATAAA or the non-canonical site ATTAAA.
We classify targets into two groups: those with the APA
site prior to the miR310s targeting site (the “APA”
group) and those without an APA site (the “noAPA”
group). Since APA results in a deletion of the miRNAs
targeting site [63], we expect that the former group will
show a smaller increase in expression. We observe the
expected pattern: a 10.2% in the APA group and a 15.9%
elevation in the non-APA group. Accordingly, the deg-
radation decrease is 4.7% in APA and 6.0% in the non-
APA group (Fig. 4b), although the between-group differ-
ence is not statistically significant.
Third, the miR310s cluster is only moderately expressed

during the third instar larvae and one transcript could be
targeted by multiple miRNAs. Based on the expression

profile, we identify the top 20 most highly-expressed miR-
NAs. We then classify miR310s targets into two groups:
“high” (transcripts co-targeted by highly-expressed miR-
NAs) and “low” (transcripts not targeted by highly-
expressed miRNAs). Although the equilibrium changes
are not significant between the “high” and “low” groups
(12.0% vs. 10.1%, P > 0.05, Fig. 4c), the degradation
changes are (− 2.7% vs. 15.2%, P < 0.05). Such a strong
contrast suggests that during degradation, highly-
expressed miRNAs exert even stronger inhibition effects
on targets once miR310s are knocked out. Several possible
mechanisms may account for this compensatory effect.
One of them is the RNA:RNA cross talks via the sponge
mechanism [68, 69]. Alternatively, the absence of one
miRNA may facilitate the binding by other miRNAs. This
alternative explanation is consistent with the actions of
highly expressed miRNAs [45, 62, 70, 71].
Finally, we classify the targets into two groups: the subset

of targets with the longest 3’ UTR among all the alternative
transcripts (“long” subgroup) and another with relatively
short UTR (“short” subgroup). The equilibrium changes are
again not significant between these “long” and “short” groups
(14.3% vs. 12.7%, P > 0.05, Fig. 4d), but the degradation rate
changes are (2.0% vs. 12.8%, P < 0.05). Such a pattern sug-
gests that the stability of an alternative transcript with longer
UTR may be regulated by multiple mechanisms, with
miR310s regulation representing only one layer.
In summary, the equilibrium changes are always insig-

nificant in our tests, but the degradation changes show a
significant change in two cases. Moreover, except for the
“high” and “long” groups, degradation rate change is
consistent with the equilibrium value change. Consider-
ing more than 50% of transcripts overlap between these
two groups, the expression level may be affected by mul-
tiple factors besides degradation.

Discussion
The pervasive weak repression of target transcripts by
miRNAs has been the central conundrum about miRNA
function in animals. In particular, the repressions by miR-
NAs are generally smaller than the level of natural vari-
ation in transcript abundance. This weak effect has led to
a published view (e.g., Pinzon et al.) that the bulk of re-
pressions by miRNAs may not be biologically relevant.
Nevertheless, this view itself is also in dispute [72].
There are many hypotheses. The simplest one posits

that most of these repressions are merely noise [11]. An
alternative hypothesis proposes that each miRNA governs
phenotypes via multiple targets in coordination [16]. Nei-
ther hypothesis is supported by experimental evidence.
An alternative solution is to question the essence of

the conundrum – that target repression is generally
weak. As presented in the Introduction, the claim that
weak repression at the mRNA level does not reflect the
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strength of repression at the protein level is not compat-
ible with available results. In fact, there are few convin-
cing reports that support miRNAs’ roles in reducing
protein output strongly [34–37].
In this study, we propose an additional possibility that has

attracted relatively little attention in the literature [52]. This
new hypothesis is based on the transcription-degradation

coupling. For example, closely related species of yeast tend
to show a strong correlation between the rate of transcrip-
tion and degradation. A gene product that is more strongly
degraded tends to be more highly transcribed in the same
species [38]. Several of the possible molecular mechanisms
of the coupling have been suggested [38–40, 73–75]. If some
of these mechanisms are incorporated into the miRNA

Fig. 4 Distribution of miR310s contribution to the equilibrium and degradation of different types of miR310s 3’UTR targets. We divide the targets
by (a) seed match types (7mer-1a, 7mer-m8, and 8mer-1a), (b) potential alternative polyadenylation location, (c) whether targeted transcripts are
also targeted by other highly-expressed miRNAs or not, and (d) UTR length. The left panels indicate equilibrium change and the right panels
show degradation change. P values are from the Wilcoxon rank sum test
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control circuitry, the indirect measurement of the equilib-
rium level of gene expression would under-estimate miRNA
repression effect. In theory, the indirect and direct measure-
ments could differ by orders of magnitude. This coupling ef-
fect is expressed in the S term of Eq. (2).
By turning off transcription in Drosophila larvae, we re-

move this confounding effect from estimation. Most im-
portantly, the direct and indirect measurements of miRNA
repression overlap. Although the direct measurement of
transcript decay yields more variable values (both technic-
ally and biologically), it is clear that the accepted view of
pervasive weak repression by miRNAs appears valid.
Given this result, we return to the original question of

miRNAs’ diffuse action, i.e., weak and broad repression.
Several contending hypotheses attempt to explain this
phenomenon, as recently summarized by Liufu et al. (2017)
and Zhao et al. (2017) [16, 72]. Some of these hypotheses
suggest that weak repression is generally devoid of function
[11]. In this view, only a few of the targets are truly func-
tional where small expression differences can lead to signifi-
cant phenotypic consequences [12, 15, 76]. While this view
can explain what is measurable, it leaves the bulk of
miRNA repression unaccounted for. Against this backdrop,
the “canalization” view which posits miRNAs’ functions in
stabilizing the transcriptome and, hence, canalizing the
phenotypes [44, 45, 70, 77] deserves more attention. The
merit of the canalization view is that it takes into account
the broad actions of weak repression, since all weak repres-
sion events cumulatively contribute to the stability of the
transcriptome [72]. Recently, this canalization view has
been expanded from the motif structure consisting of a few
nodes [71, 78, 79] to the entire RNA network [80]. This
current study, by corroborating the extent of weak repres-
sion, should help to re-energize the debate.

Conclusion
Gene regulation is expected to be direct, specific and
sufficiently powerful in order to exert non-trivial pheno-
typic effects. Under this expectation, microRNAs (miR-
NAs) in metazoans are an enigmatic class of regulatory
molecules. A central conundrum about miRNA function
is the weak target repression. Since the new mRNA syn-
thesis is usually not accurately accounted for, this repres-
sion effect may have been under-estimated in previous
studies. We measured repression effects directly by turn-
ing off new target transcript synthesis and found that
the repression effect is indeed as weak as the conven-
tional assays suggest. Our data therefore rekindle the de-
bate on the diffusive actions of miRNAs.

Methods
Fly culture and the miR310s knock-out stock
Fly larvae were reared at 25 °C and were fed a normal diet of
corn and soybean meal, agar, and molasses supplemented

with yeast. miR310s were knocked out by P-element trans-
position excision and maintained as a stock in the lab [81].

ActD treatment
We applied ActD (Sigma) that was soluble in the Phosphate
Buffer Saline (PBS) at a raw concentration of 0.5 mg/ml. To
get a suitable ActD concentration, different doses of ActD
were tried and 80 μg/ml ActD was applied to sufficiently
inhibit synthesis. L3 larvae were soaked in 800 μl of 80 μg/
ml ActD in a 35 mm cell culture plate, with the solution
just covering larval bodies. The larvae could breath under
this volume of water but could not climb out of the liquid.
RNA-Seq samples from WTand KO lines were collected at
0, 2, 4, and 8 h with two biological replicates. High correl-
ation of all mRNAs and targets were observed between the
two biological replicates (Additional file 1: Figure S1).

Reverse transcription – Quantitative real-time polymerase
chain reaction (qRT-PCR)
The isolated RNA was reverse-transcribed into cDNA using
the PrimeScript II 1st Strand cDNA Synthesis Kit (TaKaRa).
cDNA was amplified using the primer sets listed in the
Additional file 8: Table S3. RP49 was used as an internal
control. The SYBR Premix Ex Taq (TaKaRa) was used in
accordance with the manufacturer’s instructions. Quantita-
tive real-time reverse transcription PCR analysis was per-
formed using an applied biosystems 7900HT Real Time
System (ThermoFisher Scientific). Decay rates estimated by
qPCR were highly correlated with those derived from
RNA-seq (Additional file 8: Figure S5). Primers are listed in
Additional file 9: Table S4.

Library preparation and RNA-Seq
Total RNAs were extracted using the TRIzol Reagent
(Ambion). RNA quality was assessed using 1% agarose
gel electrophoresis. Five microgram of total RNA was
used and polyA positive RNAs were isolated using the
Dynabeads mRNA DIRECT Kit (Invitrogen). RNA-seq
libraries were prepared according to the standard Illu-
mina RNA-seq Library preparation protocol. Libraries
were barcoded, pooled, and sequenced using Illumina
HiSeq V4 with 125-bp paired reads. The raw sequence
data were deposited in the Genome Sequence Archive
[82] of the BIG Data Center [83], which is maintained
by the Beijing Institute of Genomics (BIG) of the Chin-
ese Academy of Sciences. The website is http://bigd.big.
ac.cn/gsa and the accession number is PRJCA000381.

RNA-seq data analysis
The gene annotation file was downloaded from the Ensembl
database. RNA-seq reads were mapped to D. melanogaster
Reference Genome (BDGP6.83) using tophat [84] and tran-
scripts’ expression value was quantified as “Fragments Per
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Kilobase of exon per Million fragments mapped” (FPKM)
using Cufflinks [85].

Identification of targets
It has been illustrated that the conservation of miRNA’s
target site sequences at 3′ untranslated regions (3’UTR)
indicates functionality [86] and miRNA’s target sites at
coding sequences (CDS) are also conserved and func-
tional between species [61]. Since miR310s are relatively
young (predating the D. melanogaster and D. pseudoobs-
cura), we identified targets based on the conservation of
seed sequence between D. melanogaster and two rela-
tively closely related species: D. simulans and D. yakuba.
miR310s CDS targets are conserved between D.melano-
gaster and D.simulans. Transcripts targeted by miR310s
were identified using the TargetScan algorithm [7, 47,
87, 88]. 3’UTR annotation was extracted from BDGP6.
83. The whole genome alignments were dm6, droSim1,
and droYak3 available at the UCSC Genome Browser.
miRNA expression during the L3 larval stage was ranked
according to previous studies [47, 48].

Decay rate calculation
Although the lifetime of rRNA is measured in days [89]
and the expression samples are collected at relatively early
time points, normalization is indispensable between
different time points. After we used FPKM to normalize for
gene length and sequencing depth and chose 10 most
stable ribosomal protein mRNAs that were relatively and
increasingly expressed at later time points to perform
normalization across samples. Due to experimental vari-
ance, long half-lives computed for stable transcripts were
often inaccurate. Therefore, mRNAs with half-lives > 15 h
were filtered out before further analysis. Moreover, after
normalization, a subset of transcripts’ expression became
very low and could lead to misleading inference of D.
Therefore, transcripts with FPKM lower than 5 in any one
sample were also filtered out. In eq. (5) and (6), normalized
FPKM were used for linear fitting. D was estimated as the
regression slope. Since the range of D is small (0–0.4,
Fig. 1d), the mode (the most frequent value, 0.12 in WT
and 0.14 in KO), in addition to the median, can be used to
estimate the background decay rate pattern. To enable dir-
ect comparisons, we divided each individual value by the
mode (0.12 in WT, 0.14 in KO) in each genetic background
separately. All calculations were conducted in R [90].

Gene ontology analysis
The top 200 most stable and unstable transcripts were
extracted to examine their Gene Ontologies. GO analysis
enrichment was performed by GO:TermFinder with the
0.05 false discovery rate cutoff [91, 92].

mRNAs with ARE, GRE and URE motifs analysis
ARE, GRE and URE motifs refer to the sequence, ATTTA,
AWTAAA, GTTTG, TTTGTTT, WTTTW, WWTTT
WW, WWWTTTWWW, WWWWTTTWWWW, and
WWWWWTTTWWWWW (W is A/U). Genes were ex-
tracted from the ARE2 website (http://nibiru.tbi.univie.ac.
at/AREsite2/genes) [93]. Genes with the above listed motifs
in 5’UTR, Exon, Intron, CDS and 3’UTR simultaneously
were considered as potentially unstable mRNAs. We found
about 490 transcripts fitting the criteria.

Additional files

Additional file 1: Figure S1. Correlation of all transcript and target
expression (log2 transformed) between two biological replicates at 0 h,
2 h, 4 h, and 8 h. (a-d) results from the WT line, (e-h) results from the KO
line. (TIF 368 kb)

Additional file 2: Figure S2. Half-lives of whole transcripts in D. melano-
gaster third instar larvae. (TIF 157 kb)

Additional file 3: Table S1. Relating mRNA stability to gene function
using a Gene Ontology (GO) analysis in the WT line (the 200 least stable
genes). (PDF 133 kb)

Additional file 4: Table S2. Relating mRNA stability to gene function
using a Gene Ontology (GO) analysis in the WT line (the 200 most stable
genes). (PDF 163 kb)

Additional file 5: Figure S3. Cumulative distribution of mRNA decay rates
of with or without AU-rich, GU-rich and U-rich elements in 3’UTR, 5’UTR, Intron,
Exon, and CDS simultaneously in (a) the WT and (b) KO line. AU-rich, GU-rich
and U-rich element: ATTTA, AWTAAA, GTTTG, TTTGTTT, WTTTW, WWTTTWW,
WWWTTTWWW, WWWWTTTWWWW, and WWWWWTTTWWWWW. W: A/U. P
values are from Wilcoxon rank sum tests. (TIF 98 kb)

Additional file 6: Table S3. The decay rates of three targets that
belong to the RNA binding protein (RBP) family. (PDF 196 kb)

Additional file 7: Figure S4. (a-c) Distribution of the equilibrium
expression and degradation change of 3’UTR targets conserved between
D. melanogaster and D. yakuba. Targets’ degradation rates were
normalized by the mode of the background decay rate. The median of
equilibrium expression value is 15.3 for WT and 16.4 for KO. The median
of degradation rate is 1.19 for WT and 1.14 for KO. (a) The cumulative
distribution of equilibrium expression change. (b) The cumulative
distribution of degradation change. (c) The contour distribution of
miR310s targets’ degradation between WT and KO. The red dot on the
contour plot marks the densest point (1.04, 0.92). (TIF 212 kb)

Additional file 8: Figure S5. The relationship between the decay rate
calculated by qRT-PCR and mRNA-seq. RP49 is used as the reference.
(TIF 72 kb)

Additional file 9: Table S4. Real-time polymerase chain reaction
primers used for mRNA quantification. (PDF 198 kb)

Abbreviations
*: The state for KO; 3’UTR: 3′ untranslated regions; ActD: Actinomycin D;
aij: Regulation strength of gene j on gene i; ARE: AU-rich elements; b: Constant
basal transcription rate; B: Synthesis rate; d: Degradation rate for KO;
D: Degradation rate for WT; D. melanogaster: Drosophila melanogaster; D.
pseudoobscura: Drosophila pseudoobscura; D. simulans: Drosophila simulans; D.
yakuba: Drosophila yakuba; Eqs: Equation; FPKM: Fragments Per Kilobase of exon
per Million fragments mapped; GRE: GU-rich elements; GRN: Gene regulatory
network; KO: Knockout; L3: The third instar larvae; miR310s: MiR310 cluster;
miRNAs: MicroRNAs; mRNA: Message RNA; PBS: Phosphate Buffer Saline; RNA-
seq: mRNA high-throughput sequencing; rRNA: Ribosomal RNA; S: Other genes’
effect on gene i; TFs: Transcription factors; UCSC: University of California Santa
Cruz; URE: U-rich elements; WT: Wild-type; X: Equilibrium state; xt: mRNA
concentration of a transcript at time t
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