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ABSTRACT

Natural antisense transcripts (NATs) are reverse
complementary at least in part to the sequences of
other endogenous sense transcripts. Most NATs
are transcribed from opposite strands of their sense
partners. They regulate sense genes at multiple
levels and are implicated in various diseases.
Using an improved whole-genome computational
pipeline, we identified abundant cis-encoded exon-
overlapping sense–antisense (SA) gene pairs in
human (7356), mouse (6806), fly (1554), and eight
other eukaryotic species (total 6534). We developed
NATsDB (Natural Antisense Transcripts DataBase,
http://natsdb.cbi.pku.edu.cn/) to enable efficient
browsing, searching and downloading of this cur-
rently most comprehensive collection of SA genes,
grouped into six classes based on their over-
lapping patterns. NATsDB also includes non-exon-
overlapping bidirectional (NOB) genes and non-
bidirectional (NBD) genes. To facilitate the study of
functions, regulations and possible pathological
implications, NATsDB includes extensive informa-
tion about gene structures, poly(A) signals and tails,
phastCons conservation, homologues in other spe-
cies, repeat elements, expressed sequence tag
(EST) expression profiles and OMIM disease asso-
ciation. NATsDB supports interactive graphical
display of the alignment of all supporting EST and
mRNA transcripts of the SA and NOB genes to
the genomic loci. It supports advanced search by
species, gene name, sequence accession number,
chromosome location, coding potential, OMIM
association and sequence similarity.

INTRODUCTION

Recent studies showed that not only prokaryotic, but also
eukaryotic genomes contain abundant genes that at least
partially overlap with another gene encoded by the opposite

strand at the same genomic loci (1–9). If the overlap involves
exonic regions of both genes, they are defined as cis-encoded
natural antisense transcripts (cis-NATs) and the pairs are
named sense–antisense (SA) gene pairs; otherwise, the pairs
are named non-exon-overlapping bidirectional (NOB, or
exon–intron overlapping) gene pairs; if the transcripts at a
genomic locus are derived from the same strand, they are
called non-bidirectional (NBD) transcripts (6,8). NATs have
long been known to be involved in gene expression regula-
tions in prokaryotic cells (1,2). In the past 10 years they
have also been found to play multiple roles in eukaryotic
gene regulation, such as X-inactivation, genomic imprinting,
alternative splicing, RNA stability, transport and translational
regulation (3–5). Abnormal changes of antisense transcription
have been associated with serious diseases such as cancer
and schizophrenia (7,10,11). NOB transcripts have been
suggested to play roles in the regulation of pre-mRNA pro-
cessing and have possible pathological associations (12,13).

Whole-genome searches have identified thousands of SA
gene pairs in mammals (6,14,15), and hundreds in fly
(6,16), worm (6,17) and plants (18,19). We recently devel-
oped a computational pipeline to identify SA and NOB
gene pairs in 10 species, the most comprehensive collection
at the time (6). Two key steps in the pipeline were the reliable
mapping of the expressed sequence tag (EST) and mRNA
transcripts to genomic sequences and the correct determina-
tion of the transcription orientation of ESTs. Here, we report
an improved pipeline that imposes more stringent quality
control filter on EST-to-genome mapping and uses more
evidence to infer the transcript orientation of ESTs. We
used the pipeline to identify over 50% more SA and NOB
gene pairs in 11 species, including human, mouse, fly,
worm, sea squirt, chicken, rat, frog, zebrafish, cow and dog,
resulting in the largest collection of SA to date (for details
see the next section).

The importance and abundance of SA and NOB gene pairs
requires a database system for efficient storage, retrieval
and display. However, current databases, SADB (http://
fantom31p.gsc.riken.jp/s_as/), Sense/Antisense Database (http://
bistro.mscs.mu.edu/antisense/index.cgi) and LEADS-Antisensor
(http://www.labonweb.com/cgi-bin/antisense/AS.cgi), are inade-
quate for several reasons. SADB includes only SA and NOB
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genes in mouse, last updated in February 2005. SADB Data-
base includes only human and mouse SA genes and LEADS-
Antisensor includes only human SA genes, both of which
have not been updated since 2003 and do not include NOB
genes. None of the existing databases includes other impor-
tant species and their collection of SA and NOB genes is lim-
ited. Furthermore, their annotation and graphical display of
the antisense transcripts is limited.

Based on the significantly enlarged set of SA and NOB
genes we identified in 11 genomes, we developed NATsDB
(Natural Antisense Transcripts DataBase, http://natsdb.cbi.
pku.edu.cn/), updated quarterly. NATsDB includes extensive
annotations and hyperlinks to external databases. It allows
users to study whether their gene of interest has antisense
transcripts, whether there is sufficient supporting evidence
of the transcript orientation, such as splicing sites, poly(A)
signals and tails, what is the exact overlapping pattern,
whether they are conserved across different species and
what is the expression profile of the sense and antisense
genes. This multiple-species, highly annotated database can
facilitate the study of the function, conservation, and evolu-
tion of SA and NOB genes.

IMPROVED PIPELINE TO IDENTIFY SA
AND NOB GENE PAIRS

We recently reported a rapid pipeline to identify SA pairs
based on UniGene sequences (20) and GoldenPath (21)
chromosome mapping data (6). In short, we filtered the
GoldenPath genome mapping data to determine the exact
chromosomal coordinates of mRNAs or ESTs. Because
many ESTs have been known to be mis-oriented, we com-
bined multiple evidence to infer the correct orientation
for mRNAs and ESTs, including sequence type (mRNA or
EST), CDS annotation, poly(A) signal/tail and consen-
sus splicing junctions. Based on the genomic coordinates,
we then grouped the orientation-reliable sequences into
SA, NOB, and NBD clusters and selected representative
sequences within each cluster to remove redundancy. Finally,
we classified the SA gene pairs into six subtypes including
‘Convergent’ (30–30 or tail–tail overlap), ‘Divergent’ (50–50

or head–head overlap), ‘Complete’ (full overlap), ‘Con-
tained’, ‘Intronic’ and ‘Others’.

Here we improved the above pipeline to further increase its
accuracy and coverage. First, more stringent filtering of the
GoldenPath mapping data was performed to retain higher-
quality mRNA/EST mapping to the genomic sequences. We
required mapping length >150 bp, identity >96%, coverage
within mapping >97% and coverage within whole transcript
>75%. If a transcript was mapped to multiple genomic loci,
only the best mapping was retained; if more than one nearly
identical best mapping existed (difference in BLAT scores
<5%), the transcript was discarded to avoid ambiguity. We
also discarded transcripts that were mapped to somatic
DNA recombination hotspots of the immunoglobulin or
T-cell receptor in the international ImMunoGeneTics infor-
mation system (IMGT) (22) because of the difficulty to
infer the exact genomic location of these genes.

Second, we kept our previous pipeline to infer the tran-
scription orientation for mRNAs and spliced ESTs (6),
while adopting the strategy by Engstrom et al. (15) for
unspliced ESTs. First, if an unspliced EST had a poly(A)
[or poly(T)] tail, then its orientation was determined to be
the original (or the opposite) orientation. Second, if its stan-
dard poly(A) signal agreed with its direction annotation, it
was considered to have the correct orientation. Third, if it
came from an ‘orientation reliable’ EST library as defined
below, it was considered to have the correct orientation.
For each EST library, we determined the orientation of
spliced ESTs and compared it with their direction annotation,
i.e. 30 sequencing or 50 sequencing. If the proportion of
spliced ESTs with correct direction annotation in a library
was >99% at the 99% confidence level, the library was con-
sidered ‘orientation reliable’ and the direction annotation of
the unspliced ESTs in the library was adopted. Engstrom
et al. (15) proved that such combination of evidences was
reliable and sensitive to infer the orientation of unspliced
ESTs. For our human dataset, 1 139 001 (50%) of unspliced
ESTs could be assigned orientation using this strategy
whereas only 317 846 (14%) could have been assigned ori-
entation using our previous pipeline (6).

Using this improved pipeline we identified 7356 SA pairs
in human, 6806 SA pairs in mouse, 1607 in rat, 1554 in fly,
and hundreds of each in worm, sea squirt, chicken, frog,
zebrafish, cow and dog. We also identified thousands of
NOB pairs. The statistics is shown in Table 1. We compared

Table 1. Input data source and content statistics of NATsDB

Species UniGene build
version

GoldenPath genome
version

Number of orientation
reliable sequences
mapped on to exact
genomic location

Percentage of
mRNAs +
Spliced
ESTs (%)

Number of
SA clusters

Number of
NOB clusters

Number of
NBD clusters

Percentage of
SA genesa(%)

Average
overlap
length of
SA pairs

Human 193 hg18 4 494 665 74.7 7356 1296 18 863 40.7 345
Mouse 155 mm8 2 100 305 81.3 6806 821 18 019 40.9 355
Rat 154 rn4 463 787 61.6 1607 726 28 463 9.7 229
Fly 44 dm2 310 319 86.5 1554 352 8311 25.6 290
Sea squirt 18 ci2 414 454 89.4 993 176 10 862 15.0 254
Cow 77 bosTau2 536 939 80.1 866 291 22 640 6.9 221
Frog 29 xenTro2 630 019 75.9 830 259 22 305 6.8 312
Chicken 30 galGal2 299 931 74.0 873 202 17 067 9.1 266
Zebrafish 91 danRer4 522 259 87.5 593 303 20 483 5.3 306
Worm 28 ce2 291 395 87.5 470 315 17 910 4.8 116
Dog 15 canFam2 203 772 75.8 302 213 15 112 3.7 152

aPercentage of SA genes ¼ 2*‘Number of SA Clusters’/(2*‘Number of SA Clusters’ + 2*‘Number of NOB Clusters’ + ‘Number of NBD Clusters’).
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the mouse SA dataset in NATsDB with that in SADB, using
the cross-reference information available on FANTOM3’s
FTP site to map clone IDs to accession numbers. We found
that 89.8% of the SA loci in SADB could be mapped to
<50% of mouse SA clusters in NATsDB. Thus despite
using different transcript datasets and genome assemblies,
NATsDB was able to cover the majority of SADB. At the
same time, NATsDB covers 50% more new data for mouse
as well as data for 10 other species not included in SADB.

INTERACTIVE WEB INTERFACE FOR BROWSING
AND SEARCH

Users can browse NATsDB by cluster type (SA, NOB or
NBD), species and genomic location. They can also limit
the selection by the six classes of SA overlapping patterns,
minimum overlapping length, coding potential of the
genes involved and UniGene description of the transcripts
(Figure 1). NATsDB intersects all the criteria and shows
the corresponding genomic loci.

To display each SA, NOB or NBD cluster, we imple-
mented an interactive web interface using PHP (http://www.
php.net/) and GD (http://www.boutell.com/gd/) graphical

library. The graphical browser displays the alignment of all
transcripts to the genomic sequence to show the overlapping
patterns (for SA and NOB). Figure 2 shows one known
SA pair in human, MKRN2/RAF1 (23). By default only the
representative sequences are shown, as some genomic loci
may have hundreds or even thousands of known mRNA
and EST transcripts, but users can choose to view all
transcripts. Users can also interactively select subsets of tran-
scripts for display using combinations of several criteria
including RefSeq (24) mRNAs, spliced ESTs, polyadenlyated
ESTs, and/or transcripts from plus, minus or both of the
strands.

The loci browser also displays several types of important
information about the transcripts and hyperlinks to external
databases such as GoldenPath (21), Homologene (20),
BodyMap-Xs (25) and OMIM (26). Exon/intron structure,
poly(A) signals and tails, CpG island and First Exon predic-
tion (27) are shown to support the transcript’s orientation.
The single-nucleotide phastCons conservation scores (28)
were imported from GoldenPath so that users can visually
check the difference in conservation between overlapping
and non-overlapping regions which might indicate biological
significance of the pairing between sense and antisense tran-
scripts (15). If an ‘H’ appears at the right end of a transcript

Figure 1. The browser interface of NATsDB: Limited by the criteria specified by the user in the top part of the page, the browser marks on the human
chromosomes all SA pairs that involve coding genes on both strands, at least one of which has ‘kinase’ in its description, with overlapping length >100 bp.
The x-axis of the figure at the bottom of the page shows the chromosomes. ‘+’ signs marked on the chromosome in different colors denote different classes of
SA pairs.
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line, it can be clicked to open a list of homologous genes, if
any, in the other 11 species, cross-reference by Homologene
(20). Expression profiling of the SA and NOB gene pairs may
provide important information about the pairs’ interaction.
We used data in BodyMap-Xs (25) to profile the expression
of transcripts in NATsDB across 13 organs, 40 tissues and
normal versus pathological conditions (Figure 3). Finally, a
hyperlink to OMIM, denoted by ‘O’, appears at the right
end of a transcript line if the gene has been previously linked
to disease.

We implemented several search options in NATsDB
(Figure 4). Boolean operators are supported for all text
searches. Users can search for genes with Entrez Gene
names, synonyms, and descriptions given the conditions
including overlapping pattercoding potential and minimum
overlapping length of representative SA pairs, or search for

transcripts with mRNA/EST accession numbers or descrip-
tions. They can search for genes in NATsDB that are
listed in OMIM to be involved in disease(s). Users can also
specify a genomic location and retrieve all SA/NOB/NBD
clusters in that region. Finally, users can search NATsDB
using BLAST (Blastn, Tblastn or Tblastx) to find SA/NOB/
NBD sequences similar to the query sequence of their
interest.

Data in NATsDB are stored in a MySQL 5.0 (http://www.
mysql.com/) relational database, which comprises 80 tables
and requires �20 GB of storage. MySQL indexes were exten-
sively created to speed up online query. All the representative
SA and NOB pairs are free to download. We will continue to
maintain NATsDB with a major update every quarter. Similar
to Ensembl (29), we archive older releases and make them
accessible for users.

Figure 2. Loci browser showing human SA gene pair, MKRN2/RAF1: The control panel on top allows users to interactively select all or subsets of all sequences.
Below the control panel, the browser displays, from top to bottom, the chromosome coordination (‘Genome’), phastCons conservation score (‘Conservation
Score’), selected supporting mRNA/EST sequences with representative sense and antisense transcripts marked in red, and links to expression profiles of
the ESTs. Gene name, tissue information, Homologene link, OMIM link and sequence link appear on the right-hand side of each transcript. For more details,
please refer to http://natsdb.cbi.pku.edu.cn/nats_help.php.

Figure 3. Expression profile of MKRN2/RAF1 is shown as bar plot, based on all spliced ESTs derived from the plus strand (MKRN2) and minus strand (RAF1) of
this genomic locus. Users could change the criteria in the control panel on the loci page to select any other subsets of ESTs to profile the sense and antisense
genes, such as only polyadenylated ESTs [with poly(A) tail or signal].
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DISCUSSION

Although genome browsers such as GoldenPath (21) and
Ensembl (29) can display a specific genomic locus with
cDNAs and ESTs aligned to it, users interested in the study
of antisense transcription would need to know a priori
which loci to open or manually check each locus one by
one to find SA and NOB pairs. Thus despite the tremendous
general utility of GoldenPath and Ensembl, databases such as
NATsDB are necessary for the study of antisense beyond
single-gene scale. NATsDB also displays other features not
available in the general browsers such as poly(A)/poly(T)
signals and tails. As more EST and genomic sequence data
become available, we will continue to enrich NATsDB with
more SA/NOB pairs in more species.
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