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New genes (or young genes) are genetic novelties pivotal in mammalian evolution. However, their phenotypic impacts and
evolutionary patterns over time remain elusive in humans owing to the technical and ethical complexities of functional stud-
ies. Integrating gene age dating with Mendelian disease phenotyping, we reveal a gradual rise in disease gene proportion as
gene age increases. Logistic regression modeling indicates that this increase in older genes may be related to their longer
sequence lengths and higher burdens of deleterious de novo germline variants (DNVs). We also find a steady integration
of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (~0.07% per million
years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures
across gene ages. Young genes show significant enrichment in diseases related to the male reproductive system, indicating
strong sexual selection. Young genes also exhibit disease-related functions potentially linked to human phenotypic innova-
tions, such as increased brain size, musculoskeletal phenotypes, and color vision. We further reveal a logistic growth pattern
of pleiotropy over evolutionary time, indicating a diminishing marginal growth of new functions for older genes owing to
intensifying selective constraints over time. We propose a “pleiotropy-barrier” model that delineates higher potential for
phenotypic innovation in young genes compared to older genes, a process under natural selection. Our study demonstrates
that evolutionarily new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations

driven by sexual and natural selection, with low pleiotropy as a selective advantage.

[Supplemental material is available for this article.]

The imperfection of DNA replication serves as a source of varia-
tions for evolution and biodiversity (Nei 2013). Such genetic vari-
ations underpin the ongoing evolution of human phenotypes,
with beneficial mutations being fixed by positive selection, and
detrimental ones being eliminated through purifying selection.
In medical terminology, this spectrum is categorized as “case
and control” or “disease and health,” representing two ends of the
phenotypic continuum (Pavlicev and Wagner 2022). Approxi-
mately 8000 rare Mendelian disorders, affecting millions world-
wide, are attributed to deleterious DNA mutations in single
genes (monogenic) or a small number of genes (oligogenic) with
significant effects (Antonarakis and Beckmann 2006; Fetro and
Scherman 2020). To date, more than 4000 Mendelian disease
genes have been identified, each contributing to a diverse array
of human phenotypes (Boycott et al. 2013; https://mirror.omim
.org/statistics/geneMap). These disease genes and associated phe-
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notypes could provide insights into the evolutionary trajectory
of human traits (Claussnitzer et al. 2020).

Evolutionarily new genes—such as de novo genes, chimeric
genes, and gene duplicates—integrate into the human genome
throughout microevolutionary processes (Brosius 1991; Kaess-
mann et al. 2002; Conrad and Antonarakis 2007; Baertsch et al.
2008; Wu et al. 2011; Long et al. 2013; Van Oss and Carvunis
2019; Betrdn and Long 2022; Zhang et al. 2022). New genes can
be integrated into essential bioprocesses, such as transcriptional
regulation, RNA synthesis, and DNA repair (Ciccarelli et al. 2005;
Ding et al. 2021). In Drosophila species, lineage-specific genes
may control the key cytological process of mitosis (Ross et al.
2013). New genes have also been found with roles in early larval
development of Drosophila (Kasinathan et al. 2020). In nematodes,
insects, and fish, some lineage-specific genes are thought to be in-
volved in morphological development, a process that was long be-
lieved to be governed by deeply conserved genetic mechanisms
(Ragsdale et al. 2013; Klomp et al. 2015; Li et al. 2021). These stud-
ies reveal important biological functions of new genes.

© 2025 Chen etal. This article, published in Genome Research, is available un-
der a Creative Commons License (Attribution 4.0 International), as described at
http://creativecommons.org/licenses/by/4.0/.
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Compared to nonhuman model organisms, in which gene
functions can be characterized through genetic knockdowns and
knockouts, investigating functions of human genes in their native
context is impractical. Despite this limitation, accumulating omic
data and in vitro studies of human genes have suggested the poten-
tial roles of evolutionarily young genes in basic cellular processes
and complex phenotypic innovations (Marques et al. 2005; Shi
and Su 2012; Zhang and Long 2014). Brain transcriptomic analysis
has revealed that upregulated genes early in human development
are enriched with primate-specific genes, particularly within the
human-specific prefrontal cortex (Zhang et al. 2011). The recruit-
ment of new genes into the transcriptome suggests that human an-
atomical novelties may evolve with the contribution of new gene
evolution. These findings contradict the conventional conserva-
tion-dominant view of human genetics and phenotypes.

It has long been observed that there are more genetic disease
genes among older genes than among young ones (Domazet-LoSo
and Tautz 2008). However, the underlying mechanism remains
unclear. In recent years, medical studies have identified deleterious
variants causing rare disorders, “orphan” diseases, and rare forms
of common diseases (Richards et al. 2015). Rare diseases are often
caused by rare variants, which have greater effects than common
variants (Richards et al. 2015; Wang et al. 2021; Chen et al.
2022, 2024a; Greene et al. 2023; Jia et al. 2023; Weiner et al.
2023). The effect of gene-based rare variant burden, the aggregate
impact of rare (including de novo germline) genetic variants in co-
horts, has been confirmed in many genetic disorders (Purcell et al.
2014; Zuk et al. 2014; Guo et al. 2018; Halvorsen et al. 2020; Jiang
et al. 2022).

In this study, we analyzed the anatomical organ/tissue/sys-
tem phenotypes (OPs) of human genetic diseases to understand
questions about gene ages, phenotypic enrichment, pleiotropy,
and selective constraints. First, are older genes more likely to be dis-
ease genes, and if so, why? Second, does the rate of disease gene
emergence (per million years) differ across macroevolutionary his-
tory? Third, do young genes show a phenotypic preference for cer-
tain disease systems? Fourth, do young genes exhibit a different
pattern of pleiotropic effects compared with older genes? Finally,
are these differences driven by selection?

Results

Young genes have lower fractions of disease genes
with OPs than do older genes

We determined the evolutionary ages (phylostrata) for 19,665
genes shared between the GenTree database (Shao et al. 2019)
and Ensembl (v110) (Supplemental Table S1). These genes were
then categorized into two types, “disease genes” or “nondisease
genes,” based on disease annotations for a total of 5006 genes
from the Human Phenotype Ontology database (HPO; September
2023), which is the de facto standard for phenotyping rare Mende-
lian diseases (Kohler et al. 2019). Among these disease genes, 60
genes lacked gene age information. Thus, an intersection of data
sets yielded 4946 genes annotated with both evolutionary age
and OP abnormalities (Fig. 1A,B; Supplemental Table S2). To en-
sure sufficient statistical power in comparisons, we merged evolu-
tionary age groups with a small number of genes (fewer than 100)
with their adjacent older group (Fig. 1A). As a result, we reclassified
these genes into seven ancestral age groups, ranging from Euteleos-
tomi (and more ancient) nodes to modern humans (brO-br6) (Fig.
1A). We observed an increase in the proportion of disease genes

over evolutionary time (Supplemental Fig. S1; Fig. 1A,C), suggest-
ing that gene age impacts disease susceptibility, a trend qualitative-
ly consistent with earlier studies (Domazet-LoSo and Tautz 2008).

The likelihood of being disease genes positively correlates
with gene age, protein length, and DNV burden

To quantify factors contributing to the likelihood of a gene being
classified as a disease gene, we assigned binary states to all genes
(“1,” disease genes; “0,” nondisease genes) and performed strati-
fied logistic regression modeling (Supplemental Table S4). We ex-
plored multiple predictors, including gene age (T; mya), gene
length (Lg) or protein length (L), gene-wise burden of deleterious
DNVs (D) from 46,612 trios (Wang et al. 2022), and rare variant
burden (R) based on gnomAD genomes (Supplemental Table S3;
Chen et al. 2024b). Sequence lengths were considered because, as-
suming a random mutation process, longer sequences would be
expected to accumulate more deleterious variants in a cohort.
Additionally, metrics of rare variant burdens were considered
because Mendelian disorders and rare forms of common diseases
are predominantly influenced by rare variants owing to their
significant phenotypic effects (Gibson 2012; Guo et al. 2018;
Kingdom et al. 2024). The burden of rare variants, which is often
based on a collapsed information of rare loss-of-function or delete-
rious variants within causal genes at the cohort level, has been ac-
tively utilized in studying rare diseases (Lee et al. 2014).

Here, the burden scores of rare variants were based on two data
sets: gene-wise burden of predicted deleterious DNVs from 46,612
trios (Wang et al. 2022) and gene-wise burden of rare variants from
76,215 genomes in the gnomAD database (v4.0.0, minor allele fre-
quency [MAF]<0.0001) (Chen et al. 2024b). Model comparison
was conducted based on likelihood ratio test (LRT) and Akaike in-
formation criterion (AIC) (Supplemental Table S4). By comparing
models of different variable combinations, we identified an opti-
mal model, M9, which supports significant effects of three vari-
ables (DNV burden, protein length, and gene age) and the
interaction between protein length and DNV burden (Chi-square
test, P=4.59 x 107°%) (for details, see Supplemental Table S4). The
likelihood of being a disease gene increases with four terms: DNV
burden (D; coefficient=0.29; P<2x 107'°), protein length (L on
the logarithmic scale; coefficient=0.22; P=0.00031), gene age (T;
coefficient=0.0041; P<2x1071%), and the interaction between
DNV burden and the logarithmic protein length (coefficient=
-0.027; P=1.27 x 10~°) (Supplemental Table $4 and Supplemental
Fig. S2). The logarithmic scale effect of protein length on the like-
lihood suggests that normalizing extreme lengths could improve
model fit. The negative coefficient for the interaction term be-
tween DNV burden and log-transformed protein length indicates
an underlying trade-off between the two factors, suggesting that
the impact of mutation burden on the likelihood of a gene being
classified as a disease gene decreases as the protein length increases
(Supplemental Fig. S4). In other words, although de novo mutation
burden generally increases the probability of a gene being a disease
gene, this effect is moderated by protein sequence length, with lon-
ger proteins showing a diminished impact of mutation burden.
The values of variance inflation factor (VIF) for the variables range
from 1.03 to 1.55, well below the multicollinearity concern thresh-
olds of five to 10, suggesting minimal impact of multicollinearity
among these variables on our model.

Consistent with the implications of this model, we found
that disease genes tend to be significantly longer than nondisease
genes in most branches (Wilcoxon rank-sum test, P<0.05),
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Figure 1. Number of genes, burdens of deleterious rare variants, and K,/K; ratios for genes categorized by gene ages (phylostrata) and disease systems
(OPs). (A) The phylogenetic framework illustrating phylostrata and disease genes associated with disease systems (OPs). The phylogenetic branches rep-
resent phylostratum assignment for all genes and disease genes. The “br” values from br0 to br6 indicate different age groups (or branches). These are
further categorized into four phylostrata to resolve the small number problem in bré for some analyses. The horizontal axis depicts the divergence time
sourced from the TimeTree database (July 2023). The numbers of total genes and disease genes and their ratios are shown for each phylostratum. (B)
The 22 HPO-defined OPs, which are ordered based on the fraction of disease genes in a certain system out of all disease genes. (C) The fractions of disease
genes at four major phylostrata from Euteleostomi to Eutheria. (D) The protein lengths between disease and nondisease genes across four phylostrata. (E)
The gene-wise burden based on de novo germline variants from the Gene4Denovo database (Zhao et al. 2020) between disease and nondisease genes
across four phylostrata. (F) The burden score of ultrarare pLOF variants (Weiner et al. 2023) between disease and nondisease genes across four phylostrata.
(G) The pairwise K,/K; ratios from the Ensembl database based on maximum likelihood estimation for “one-to-one” orthologs between human and chim-
panzee. Only genes under purifying selection are shown (K,/K;< 1, 3226 genes). (H) The box plot for the number of affected systems for disease genes and
their pairwise K,/K; ratios for “one-to-one” orthologs between human and chimpanzee (K,/K; ratios for all 3369 genes). The linear regression is based on
median values and the number of affected tissues, with the statistical details and formula displayed in the upper right corner. Note that all significance levels
of comparisons between disease genes and nondisease genes are determined using the Wilcoxon rank-sum test. (***) P<0.001.

except for br4 and br6 (Supplemental Fig. S3A). The nonsignifi-
cant difference in these two branches may be because of the lim-
ited power of comparison caused by the lower sample sizes. We
further compared between disease and nondisease genes, using
the reported burdens of DNVs (Zhao et al. 2020) and ultrarare pre-
dicted loss-of-function variants (pLOF;, MAF<1 x 107%) from
394,783 exomes (Supplemental Fig. S3B,C; Weiner et al. 2023).
For pLOF comparison, we found significant lower burdens of del-

eterious variants for all branches (Wilcoxon rank-sum test, P<
0.05). For DNVs comparison, only the primate-specific branch
(br6) was not significant, probably owing to small sample size.
To increase the statistical power of comparison between disease
and nondisease genes across different phylostrata, we further col-
lapsed the number of phylostrata to four, starting from the oldest,
Euteleostomi, to the progressively younger stages of Tetrapoda,
Amniota, and Eutheria (Fig. 1A). Based on these four phylostrata,
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we confirmed that disease genes tend to have significantly longer
lengths and higher burdens of deleterious variants than do non-
disease genes across all major phylostrata (Wilcoxon rank-sum
test, P<2.2x 107'%) (Fig. 1D-F).

Young genes have lower burdens of DNVs and rare variants
than older genes

We further examined the statistical correlation between gene age
and burden of potentially deleterious variants. We used data sets
from predicted deleterious de novo germline variations (DNVs)
(Wang et al. 2022) and genome-wide rare variants from the
gnomAD database (Chen et al. 2024b). We found that gene age
(mya) positively correlates with DNV burden (Spearman’s rank
correlation p=0.181, P<2.2x107'% and rare variant burden
(Spearman’s rank correlation p=0.306, P<2.2 x 107'%). When us-
ing different methods for human gene age dating, gene family-
based (Neme and Tautz 2013) and synteny-based method (Shao
et al. 2019), alongside different data sets on DNV burdens (Zhao
et al. 2020), we also found significant correlations between gene
age and DNV burden (Supplemental Fig. S4A,B).

New genes could originate from both “copying” and “non-
copying” mechanisms (Vonica et al. 2020; Luria et al. 2023;
Fleck et al. 2024), with the former from the processes of gene dupli-
cation and gene traffic (Emerson et al. 2004) and the latter occur-
ring from exclusively sequence evolution (Domazet-LoSo et al.
2007). Thus, genetic novelty of new genes could be either “novel-
ty-by-synteny” or “novelty-by-similarity.” If the novelty resides in
the protein sequence itself, then new genes by synteny should
have burdens equivalent to the ancient genes that they were cop-
ied from. Considering that retrogenes are known genes with “nov-
elty-by-synteny” owing to their random insertions into different
genomic regions, we chose retrogenes and their parental genes
to test this possibility. Retrogenes and their parental genes could
be easily detected owing to their clear structural changes, such as
intron loss during retro-transposition and insertion hallmarks
(Long and Langley 1993; Miller et al. 2022). We retrieved known
pairs of retrogenes and their parental genes from the GenTree da-
tabase (Supplemental Table S5). We found that over half of the ret-
rogenes have lower burdens of DNVs and burden scores of pLOF
variants compared with their parental genes. In contrast, <36%
of retrogenes showed higher burdens than their parental genes.
Thus, retrogenes are different from their parental genes in terms
of deleterious variant burden, supporting that new genes by syn-
teny could lead to functional novelty. Moreover, we compared
the primate-specific genes identified only from the synteny-based
method and only from the similarity-based method, which are
also young genes by synteny and those by similarity, respectively.
We found significantly higher burdens of DNVs and pLOF in
young genes by synteny than those by similarity (Wilcoxon
rank-sum test, P<0.001). Together, our results suggest that genes
with “novelty-by-synteny” are more likely to have disease func-
tions than those with “novelty-by-similarity” but are less likely
than their parental genes. These results are consistent with our
Supplemental Figure S4, A and B, which indicate young genes
tend to have lower burden of deleterious DNVs than older genes
based on a different data set of DNV burden (Zhao et al. 2020).

Purifying selection intensifies with gene age and is stronger
in disease genes than in nondisease genes

To understand if disease genes evolve under different evolutionary
pressures compared with nondisease genes, we compared the K,/Kj

ratio, which is the ratio of the number of nonsynonymous substi-
tutions per nonsynonymous site (K,) to the number of synony-
mous substitutions per synonymous site (K;). Values of K,/Kj
ratios less than one suggest a degree of evolutionary constraint
(acting against change) (Yang and Bielawski 2000). To ensure sim-
ilar evolutionary backgrounds, we retrieved the “one-to-one”
human-chimpanzee orthologous genes and the corresponding
pairwise K,/K; ratios (12,830 genes) from the Ensembl database
(Supplemental Table S6). We also evaluated whether the pattern
is consistent with K,/K; ratios of human-bonobo and human-
macaque orthologs (Supplemental Table S6). K,/K; ratios were
consistently lower in disease genes than in nondisease genes for
human-chimpanzee orthologs (0.250 vs. 0.321), human-bonobo
orthologs (0.273 vs. 0.340), and human-macaque orthologs
(0.161 vs. 0.213; Wilcoxon rank-sum test, P<2.2x 107'° for all
three data sets). These results revealed that disease genes are under
significantly stronger purifying selection than nondisease genes,
suggesting an important component of selective pressure in con-
straining the sequence evolution of disease genes. We observed
that K,/K; ratios (less than one) increase inversely proportional
to gene age, suggesting a trend of relaxed purifying selection on
young genes (Fig. 1G; Supplemental Fig. S5), which is consistent
with some previous studies (Carvunis et al. 2012; Prabh et al.
2018; Montariés et al. 2023). Across the seven gene age groups, dis-
ease genes showed significantly lower K,/K; than nondisease genes
in five out of seven groups (Supplemental Fig. S5). The nonsignif-
icant difference in the primate-specific branch (br6) and the theri-
an-specific branch (br4) could be because of the lower number of
disease genes with K,/K; ratios (13 genes in br6 and 56 genes in
br4). Notably, despite the relaxation of purifying selection for
younger genes, disease genes still tend to show lower K,/K; ratios
than nondisease genes for gene ages of four phylostrata, suggesting
a pattern of stronger purifying selection in disease genes (Fig. 1G;
Supplemental Fig. S5).

We observed a heterogeneous distribution of disease
genes underlying 22 HPO-defined anatomical systems, suggest-
ing varied genetic complexity for diseases of different systems
(Supplemental Fig. S6A). None of the disease genes were found
to impact all 22 systems. In contrast, 6.96% of disease genes
(344/4946) were specific to a single system’s abnormality.
Notably, four systems—the genitourinary system (with 81 genes),
the eyes (68 genes), the ears (63 genes), and the nervous system
(55 genes)—collectively represented 77.62% of these system-spe-
cific genes (267/344) (Supplemental Table S2). The nervous sys-
tem displayed the highest fraction of disease genes (79%)
(Supplemental Fig. S6B). A large proportion of disease genes
(93.04%) were linked to abnormalities of at least two systems
(4602/4946), indicating that most human disease genes may
have broad phenotypic impacts or pleiotropy across multiple an-
atomical systems. These phenotypic effects across systems might
arise from the complex clinical symptoms of rare diseases mani-
festing in multiple organs, tissues, or systems, indicating consid-
erable levels of pleiotropy (Hodgkin 1998; Paul 2000; Lobo 2008).
Compared with commonly used functional inferences based on
human gene expression profiles or in vitro screening, the com-
prehensive and deep phenotyping offered by HPO provides a
more systematic perspective on the functional roles of human
disease genes. We found a moderate but statistically significant
inverse correlation between the median K,/K; ratios and the num-
bers of affected anatomical systems in disease genes (linear corre-
lation adjusted R*=0.38, P=0.0018) (Fig. 1H). This implies that
disease genes with higher pleiotropy, which impact multiple
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anatomical systems, face stronger evolutionary constraints com-
pared with genes with lower pleiotropy (Fig. 1H).

Disease gene emergence rate per million years is similar across
macroevolutionary phylostrata

To understand whether different phylostrata have different emer-
gence rates for disease genes, we assessed the disease gene emer-
gence rate per million years across phylostrata from Euteleostomi
to Primate (u). Considering the sampling space variations at differ-
ent age groups, we calculated p as the fraction of disease genes per
million years at each phylostratum (Fig. 2A). Although the propor-
tions of disease genes were found to gradually increase from young
to old phylostrata (Fig. 1A), the rate p is nearly constant at ~0.07%
per million years for different phylostrata (Fig. 2A). This constant
emergence rate of disease genes suggests a continuous and similar
fraction of genes evolving to have significant impacts on health
during evolutionary history.

Using the recently reported average human generation time
of 26.9 years (Wang et al. 2023) and the most updated number
of coding genes (19,831 based on Ensembl v110) and assuming a
simplified monogenic model (Richards et al. 2015), we estimated
the number of causal genes for rare diseases per individual per gen-
eration (ug) as 3.73 x 107* (19,831 x 26.9 x 0.07 x 1073). Using this
rate, we can derive the rare disease prevalence rate (rgp= 10,000 x
ua), which equates to approximately four in 10,000 individuals.
This prevalence agrees well with the European Union definition
of rare disease rate prevalence of five in 10,000 people (Stolk
et al. 2006). This constant emergence rate highlights the idea
that young genes continually acquire functions vital for human
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health and phenotypic innovations (Kaessmann 2010; Chen
et al. 2013; Xia et al. 2025).

Pleiotropy growth rate is faster in younger genes following
a logistic growth pattern

Despite the nearly constant integration of young genes into crucial
biological functions (Fig. 2A), it remains uncertain if gene age
could influence disease phenotypic spectra (or pleiotropy). The
overall distribution of OP counts for disease genes (Supplemental
Fig. S6A) is similar to that of gene expression breadth across tissues
(Supplemental Fig. S7A-C). The distribution for OP counts showed
that young genes have lower peak and median values than older
genes (Fig. 2A-C). This pattern is consistent with the results
that younger genes tend to be expressed in a limited range of
tissues, whereas older genes exhibit a broader expression profile
(Supplemental Fig. S7D), which also aligns with reported expres-
sion profiles (Zhang et al. 2012; Long et al. 2013; Carelli et al.
2016; Miller et al. 2022). We found an increasing trend for median
OP numbers from young to old phylostrata (Fig. 2C). The increase

AOP_median
rates | ———

(%

than the older ones (0.12/mya at the Eutheria vs. 0.05/mya at older
phylostrata on average) (Supplemental Table S7), suggesting a non-
linear and restricted growth model for the level of pleiotropy over
time. We applied a logistic growth function and observed a signifi-
cant pattern: As evolutionary time increases, the level of pleiotropy
rises (P<0.001) (Fig. 2D). Moreover, the logistic model demon-
strates a diminishing marginal growth for pleiotropy over time, in-
dicating that the rate of increase in pleiotropy slows down over

) were higher among the younger phylostrata
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Figure 2. Disease gene emergence rates along phylostrata, OP counts comparison between the youngest and oldest phylostrata, and disease PEl along
phylostrata. (A) The disease-gene emergence rate per million years (r) along phylostrata. (B) Density distributions showcase numbers of affected organ
phenotypic (OP) systems for genes originated at primate and Euteleostomi phylostrata. (C) Box plot distributions showcase the numbers of affected
OP systems for genes grouped by their phylostrata (median values are four, eight, seven, eight, nine, nine, 10, from left to right). (D) The nonlinear least
P_max

ey — k=1.66, P=

14T ek
0.000787. The 95% confidence interval is shown shade. P_max and P_0 are empirical medians 10 and four, respectively. (E) The distribution of phylostrata
and OP for PEl. The bar plots, colored differently, represent phylostrata, namely, Euteleostomi, Tetrapoda, Amniota, and Eutheria, in ascending order of
evolutionary ages. The disease systems (OPs) are displayed on the horizontal axis and defined in Figure 1C. The SDs of PEl are 3.67 for Eutheria and ap-
proximately 2.79 for older phylostrata.

squares (NLS) regression between pleiotropy score (P) and evolutionary times t with the logistic growth function: P(t) =
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evolutionary time. This pattern suggests that although pleiotropy
is initially lower in new genes, it increases more rapidly compared
with in older genes. This result is consistent with the finding that
purifying selection gradually increases over evolutionary time
(Fig. 1G), limiting the space of pleiotropy growth in older genes.

Young genes are highly enriched in reproductive and nervous
system diseases

We found a significant positive correlation between tissue ex-
pression breadth and the number of affected disease systems
(Spearman’s rank correlation, p=0.138, P<2.2x107'%) (Supple-
mental Table $8). To understand the enrichment pattern of disease
phenotypes for young and old genes, we introduced a metric of the
disease phenotype enrichment index (PEI), which quantifies the
range of phenotypes across multiple systems (for details, see Meth-
ods). Our findings revealed that the most ancient genes, specifi-
cally from Euteleostomi and Tetrapoda, had the strongest PEI
association with the nervous system (OP1). Conversely, young
genes from Amniota and Eutheria exhibit the highest PEI for
disease phenotypes of the genitourinary system (OP7) and the
nervous system (OP1), in which the genitourinary system (OP7)
shows a 38.65% higher PEI than the nervous system (OP1) (Fig.
2E; Supplemental Table S9). Among the 22 disease phenotype sys-
tems, only the reproductive system (OP7) showed a steady rise in
PEI from older phylostrata to younger ones (Fig. 2E). There are
smaller variations in PEI for older phylostrata compared with the
more recent Eutheria (about 2.79 vs. 3.67), suggesting that older
disease genes impact a greater number of organ systems, as shown
in Figure 2C. This finding is consistent with the “out-of-testis” hy-
pothesis (Kaessmann 2010) that the expression patterns of young
genes are biased to the testes and may have vital roles in male re-
production. As genes evolve, their expression patterns tend to
broaden, potentially leading to phenotypic effects impacting mul-
tiple organ systems.

Apart from the reproductive system (OP7), we found that
the nervous system (OP1) showed the second highest PEI for
Eutherian young disease genes (Fig. 2E). Moreover, 42% of the
19 Primate-specific disease genes with diseases affecting the
nervous system (OP1) correlated with phenotypes involving
brain size or intellectual development (CFC1, DDX11, H4CS,
NOTCH2NLC, NOTCH2NLA, NPAP1, RRP7A, and SMPD4) (Sup-
plemental Table S2; Supplemental Material), consistent with the
expectation of previous studies based on gene expression (Zhang
et al. 2011). Furthermore, the primate-specific disease genes
show phenotypic enrichment in other adaptive systems, particu-
larly in the HPO systems of the head, neck, eyes, and musculoskel-
etal structure (Fig. 2E). In summary, the primate-specific disease
genes could impact phenotypes from both reproductive and non-
reproductive systems, particularly the genitourinary, nervous, and
musculoskeletal systems (Supplemental Table S2), supporting
their roles in both sexual and adaptive evolution.

Sex chromosomes are enriched for male-reproductive disease
genes: the “male X-hemizygosity” effect

Considering the concentration of the youngest disease genes in
the reproductive system (Fig. 2E, OP7), we hypothesized that
the distribution of disease genes could be skewed across chromo-
somes. First, we examined the distribution of all disease genes
and found a distinct, uneven spread across chromosomes (Fig.
3A; Supplemental Table S10). The X and Y Chromosomes contain
higher fractions of disease genes compared with autosomes.

Although autosomes have a linear slope of 0.23 (R*=0.93; P=2.2
x 10713) (Fig. 3B), the proportion of Y Chromosomal disease genes
is 82.61% higher, at 0.42. Meanwhile, the proportion of X
Chromosomal disease genes is 30.43% higher than that of auto-
somes, sitting at 0.301. To understand whether the differences
between sex chromosomes and autosomes are related to the repro-
ductive functions, we divided disease genes into reproductive
(1285 genes) and nonreproductive (3661 genes) categories based
on affected organs (Supplemental Table S11). By fitting the num-
ber of disease genes against all genes with gene age information,
we observed that the X Chromosome has a bias toward reproduc-
tive functions. Specifically, on the X Chromosome, disease genes
affecting nonreproductive systems were slightly fewer than ex-
pected (—1.65% excess rate, with 154 observed vs. 156.59 expect-
ed) (Fig. 3C). The X Chromosome displayed a significant surplus
of reproductive-related disease genes (observed number 99, expect-
ed number 52.73, excess rate 87.75%, P<5.56 x 107%) (Fig. 3D).

Given the sex-imbalanced mode of inheritance for the X
Chromosome, a theoretical model has predicted that purifying
selection would remove both dominant female-detrimental
mutations and recessive male-detrimental mutations (Rice 1984;
Charlesworth et al. 1987). We determined that the ratio of male
to female reproductive disease genes (Mgisease/Faisease, OI @) is con-
siderably higher for the X Chromosome (80/9 =8.89) than for au-
tosomes on average (38/21=1.81, odds ratio=16.08, 95% CI:
6.73-38.44, P<0.0001). This suggests a disproportionate represen-
tation of disease genes from the male hemizygous X Chromosome
compared with the female homozygous X, consistent with a recent
medical study (Chen et al. 2024a). Thus, our analysis indicates that
the abundance of disease genes on the X Chromosome compared
with autosomes is likely owing to male-specific functional effects.
These results suggest that the overrepresentation of disease genes
on the X Chromosome primarily results from recessive X-linked
inheritance affecting males rather than dominant effects impact-
ing both sexes.

Genome-wide excess of male reproductive disease genes:
the “faster-X” and “faster-male” effects

To determine which sex (male or female) might influence the bi-
ased distribution of reproductive-related genes on different chro-
mosomes, we focused on genes specific to male and female
reproductive disease. We retrieved 154 female-specific and 945
male-specific disease genes related to the reproductive system
(Supplemental Table S11). Through linear regression analysis, we
assessed the number of sex-specific reproductive disease genes
against the total gene numbers for each chromosome. We
observed strikingly different patterns dependent on sex and chro-
mosomal locations.

For female reproductive disease genes, the X Chromosome fol-
lowed a linear pattern and did not differ significantly from auto-
somes (R?=0.53, P=1.04x 1074 (Fig. 3E). In contrast, male
reproductive disease genes on the X and Y Chromosomes showed
significant deviations from the autosomes of a linear pattern (R*=
0.82, P=5.56x107%) (Fig. 3F). The X Chromosome contained
111.75% more male reproductive genes than expected. Moreover,
the Y (17/45) and X (80/840) Chromosomes had significantly high-
er ratios of male reproductive disease genes compared with auto-
somes (averaging 38/853), with odds ratios of 8.48 (95% CI: 4.45-
16.17, P<0.0001) and 2.14 (95% CI: 1.44-3.18, P=0.0002), respec-
tively. On the X Chromosome, male reproductive genes outnum-
bered female ones by a factor of 10.43 (80/840 vs. 7/840). This
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Figure 3. Chromosomal analyses for disease genes. (A) The proportions of disease genes across chromosomes. The pink bars represent the autosomes,
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linear regression plotting of disease gene counts against the numbers of total genes with age information on chromosomes. (C) Numbers of genes related
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observation is consistent with the “faster-X hypothesis,” which sug-
gests that purifying selection is more effective at eliminating reces-
sive deleterious mutations on the X Chromosome owing to the
male hemizygosity of the X Chromosome (Rice 1984;
Charlesworth et al. 1987). A male bias is also evident in reproductive
disease genes on autosomes, with the male linear model slope being
approximately 4.21 times steeper than that for females (0.038 vs.
0.0073) (Fig. 3E,F). Thus, the observed excess of male reproductive
disease genes is not solely owing to the “faster-X” effect. It might
also be influenced by the “faster-male” effect, in which the male re-
productive system evolves rapidly owing to heightened sexual selec-
tion pressures on males (Wu and Davis 1993).

Excess of male reproductive disease genes in younger regions
of the X Chromosome

Although we observed a male bias in reproductive disease genes,
the influence of gene age on this excess remains unclear. We com-

pared gene distribution patterns between older (or ancient,
Euteleostomi) and younger (post-Euteleostomi) phylostrata. For
female-specific reproductive disease genes, the X Chromosome
has an excess of ancient genes (25.42%) but a deficiency of young
genes (57.16%) (Fig. 4A). Conversely, among male-specific repro-
ductive disease genes, younger genes exhibited a higher excess
rate than ancient ones (193.96% vs. 80.09%) (Fig. 4A). These pat-
terns suggest an age-dependent functional divergence of genes on
the X Chromosome, which is consistent with gene expression data
(Zhang et al. 2010). The X Chromosome is “masculinized” with
young, male-biased genes, whereas old X Chromosomal genes
tend to be “feminized,” maintaining expression in females
(Zhang et al. 2010). On autosomes, the linear regression slope val-
ues were higher for male reproductive disease genes than for fe-
male ones, both for ancient (0.027 vs. 0.0041) and young (0.012
vs. 0.0021) genes (Fig. 4A). The ratio of male to female reproductive
disease gene counts (o) showed a predominantly male-biased trend
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across phylostrata, with a higher value in the most recent Eutheria
(9.75) compared to the ancient phylostrata Euteleostomi and
Tetrapoda (6.40 and 3.94) (Fig. 4B). A comparison of selection pres-
sure between young and ancient genes revealed no significant
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Figure 4. The X Chromosomal analyses for disease genes. (A) Numbers of female-specific (left) and
male-specific reproductive disease genes (right) are plotted against all protein-coding genes with gene
ages on chromosomes. The linear formulas fitted for autosomal genes at ancient (Euteleostomi) and
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difference for female-specific reproductive disease genes, but a
significant difference for male-specific ones (Wilcoxon rank-sum
test, P<0.0001) (Fig. 4C), indicating that young genes under
male-biased sexual selection have fewer evolutionary constraints

than older ones (median K,/K; ratios
0.35vs. 0.23).

Structurally, the eutherian hemizy-
gous X Chromosome comprises an ances-
tral X-conserved region and a relatively
new X-added region (Bellott et al.
2010). The ancestral X-conserved region
is shared with the marsupial X Chromo-
some, whereas the X-added region origi-
nates from autosomes (Fig. 4D). To
understand whether these regions of the
human X Chromosome might contribute
differently to human genetic disease phe-
notypes, we compared genes within the
X-conserved and X-added regions, based
on previous studies of evolutionary strata
on the X Chromosome (Ross et al. 2005;
McLysaght 2008; Pandey et al. 2013). Af-
ter excluding genes in pseudoautosomal
regions (X-PARs; Ensembl v110), we
found that the proportion of male-specif-
ic reproductive disease genes in the X-
added region (13.07%, 23/176) exceeds
that in the X-conserved region (8.33%,
55/660) (Fig. 4D,E; Supplemental Table
S12). Moreover, analyses of the evolution-
ary strata, based on the substitutions
method (Lahn and Page 1999) and the
segmentation and clustering method
(Pandey et al. 2013), consistently showed
higher fractions of male-specific repro-
ductive disease genes in younger evolu-
tionary strata than in older ones (Fig.
4F). These observations indicate that, on
the X Chromosome, young genes could
be more susceptible to male-biased sexual
selection than old genes, despite their
nearly identical hemizygous environ-
ment. Thus, the higher o in X-linked
younger regions could not be attributed
exclusively to the “male-driven,” “faster-
X,” “faster-male,” “male X-hemizygosity”
effects, as these impact X-linked older and
young genes similarly. Instead, the higher
o in X-linked young regions may be driv-
en by lower pleiotropy among young
genes, allowing novel male-related func-
tions to emerge faster in young genes
than in older ones.

Discussion

By combining human gene age dating
and Mendelian disease phenotyping,
we reveal a trend of disease gene propor-
tions increasing over evolutionary time.
This growth pattern is attributed to high-
er burdens of deleterious variants in older
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genes. The ratio of health-related genes per million years remains
relatively consistent across macroevolutionary phylostrata.
Young genes are preferentially linked to disease phenotypes in
the male reproductive system, as well as in systems that have un-
dergone significant phenotypic innovations during primate or hu-
man evolution, including the nervous system, head and neck,
eyes, and the musculoskeletal system. The enrichment of these dis-
ease systems points to the driving forces of both sexual selection
and adaptive evolution for young genes, which tend to display spe-
cialized functions. Our findings highlight that young genes are
likely at the forefront of frontrunners of molecular evolution for
phenotypic innovation (see Supplemental Material).

Our findings raise a question of why new genes can quickly
contribute to phenotypic traits that are crucial for both sexual evo-
lution and adaptive innovation. This question could not be fully
addressed by previous hypotheses. The “out-of-testis” theory
does not offer specific predictions regarding the propensity of
new or young genes to be involved in adaptive traits. Other theo-
ries, such as the “male-driven,” “faster-X,” “male X-hemizygos-
ity,” and “faster-male” theories, cannot explain the finding that
male-biased functions are more prevalent in young X-linked genes
compared to older ones. Here, we propose that different phenotyp-
ic patterns between young and older genes could be related to dif-
ferences in their pleiotropy.

The phenomenon of pleiotropy has been recognized or sug-
gested for a considerable time (Mendel 1866; Wright 1984;
Barton 1990; Baatz and Wagner 1997). Mendel’s classic paper in
1866 suggests a single factor controls three characters of Pisum
(Mendel 1866). Before Mendel, many medical professionals had al-
ready described syndromes characterized by different symptoms
and a single “familial” factor (Eckman 1788). In the context of
new gene evolution, it is established that young genes exhibit
higher specificity and narrower expression breadth across tissues
(Zhang et al. 2012). In our study, pleiotropy is more relevantly de-
fined as involving anatomical systems and critical phenotypes
(Pyeritz 1989; Lobo 2008; Tyler et al. 2009; Zhang 2023). We reveal
a pattern that older genes tend to impact disease phenotypes of
more organs/systems, whereas young genes largely display pheno-
type enrichment in specific organs. Therefore, both phenotypic
pattern and expression trends across phylostrata suggest that
young genes may have lower pleiotropy compared with older
genes.

Pleiotropy impedes evolutionary adaptation, often referred to
as the “cost of complexity” (Zeng and Hill 1986; Baatz and Wagner
1997; Orr 2000; Wagner and Zhang 2011; Fraisse et al. 2019;
Quiver and Lachance 2022), whereas low pleiotropy could foster
morphological evolution (Carroll 2005; Wray 2007). The inhibito-
ry effect of pleiotropy on novel adaptation aligns with our observa-
tions of the stronger purifying selection on older genes with higher
pleiotropy (Wagner and Zhang 2011; Quiver and Lachance 2022)
and broader expression patterns (Zhu et al. 2008). This evolution-
ary constraint suggests a restricted mutation space to introduce
novel traits for old genes owing to the “competing interests” of
multifunctionality (Fig. 5). The inhibitory pressure could also
reduce genetic diversity owing to background selection
(Charlesworth et al. 1993). The evolution of new genes, especially
gene duplicates, serves as a primary mechanism to mitigate pleio-
tropic effects (He and Zhang 2005; Guillaume and Otto 2012) and
avoid adverse pleiotropy in ancestral copies (Hoekstra and Coyne
2007). The tissue-specific functions of new genes, as a general pat-
tern in numerous organisms, could circumvent adaptive conflicts
caused by the multifunctionality of parental genes (Des Marais and

A
Time (t)
P (t) Phenome Py
‘ Phenotypes
- Selection
- Genes
l Functional
Domains
Genome
Old gene new gene
origination
B ‘\ Maximum relative pleiotropy
[

a

=

Q.

g

k=] Logistic

(]

- —— growth

[ function

=

K

[9]

) T

0 >

=

Evolutionary Time from young to old (

)

Figure 5. The “pleiotropy-barrier” model. (A) The “pleiotropy-barrier”
model posits a dynamic process that new genes evolve adaptively more
quickly compared with older genes. It suggests that older genes undergo
stronger purifying selection because their multiple functions (usually ad-
verse pleiotropy) act as a “barrier-like” factor to hinder fixations of muta-
tions that might otherwise be beneficial for novel phenotypes. (B) The
logistic function between relative pleiotropy P(t) and evolutionary time t,
P_max
P(t) = 'I—e’k“
The k is the growth rate parameter, which controls how quickly the phe-
nomenon approaches the maximum value. A higher k value means faster
growth initially.

where P_max represents the maximum relative pleiotropy.

Rausher 2008). The reduced pleiotropy in young genes may there-
fore provide a more diverse mutational space for functional inno-
vation, minimizing unintended pleiotropic trade-offs (Dezs6 et al.
2008).

Here, we propose a “pleiotropy-barrier” hypothesis to explain
the relationship between innovation potential and gene ages (Fig.
5A). This model predicts that the capacity for phenotypic innova-
tion is limited by genetic pleiotropy under natural selection, sug-
gesting that genes with lower pleiotropy may have greater
potential for functional innovation. Over evolutionary time, the
pleiotropy increase follows a logistic growth pattern, in which
the growth could be faster for younger genes but slower for older
genes (Fig. 5B). The multifunctional genes could encounter an es-
calating “barrier” or “resistance” to the pleiotropy growth. This
barrier arises because more functions necessitate stronger selective
constraints, which could, in turn, reduce the mutational space of
beneficial mutations for novel phenotypes. In contrast, low or ab-
sent pleiotropy in new genes allows for a broader and more tunable
mutation space under relaxed purifying selection. The permissive
environment provides a fertile ground for beneficial mutations to
appear with novel functions. Such innovations, initially as poly-
morphisms within a population, can become advantageous phe-
notypes and ready responders in certain environment under
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positive selection. For phenotypes under sexual selection, high
pleiotropy may limit the potential to resolve sexual conflict
through sex-limited expression (VanKuren et al. 2024). Thus, the
“pleiotropy-barrier” model also applies to the evolution of new
genes with male-specific functions driven by sexual selection
(VanKuren and Long 2018).

The “pleiotropy-barrier” model does not predict a static satu-
ration of pleiotropy in older genes, rather it emphasizes a contin-
uous and dynamic process between gene age and innovation
potential, in which gene pleiotropy imposes selective constraints
that limit further innovation. This evolving constraint creates a
“barrier” that diminishes the potential for genes to acquire new
functions, as any beneficial mutations must navigate the complex
interplay of existing functions and selective pressures. In contrast,
younger genes, which start with low or no pleiotropy, have a great-
er capacity for evolutionary change. Their low multifunctionality
allows them to exploit a wider mutational space, facilitating the
development of novel traits and functions. This dynamic process
is evident in systems that have undergone significant phenotypic
innovations in human evolution, such as the nervous system, the
musculoskeletal system, the male reproductive system, and the im-
mune system.

Therefore, new or young genes with a lower pleiotropic effect
as a selective advantage not only spur molecular evolution under
sexual and natural selection but also, from a medical standpoint,
are promising targets for precise medicine, warranting deeper
investigation.

Methods

Gene age dating and disease phenotypes

The gene age dating was conducted using an inclusive approach
for both autosomes and sex chromosomes (Chromosome X and
Y). Specifically, for autosomal and X Chromosomal genes, we pri-
marily obtained gene ages (phylostrata, branches, or origination
stages) from the GenTree database (Zhang et al. 2010; Shao et al.
2019), which is based on Ensembl v95 of human reference genome
version hg38 (Flicek et al. 2014). We then trans-mapped the v95
gene list of GenTree into Ensembl gene annotation (v110). The
gene age inference in the GenTree database relied on genome-
wide synteny and was based on the presence of syntenic blocks ob-
tained from whole-genome alignments between human and out-
group genomes (Zhang et al. 2010; Long et al. 2013; Shao et al.
2019). The most phylogenetically distant branch at which the
shared syntenic block was detected marks the latest possible time
range when a human gene originated. In comparison to the meth-
od based on the similarity of protein families, namely, the phylo-
stratigraphic dating (Neme and Tautz 2013), this method
employed in GenTree is robust to recent gene duplications (Shao
et al. 2019), despite its underestimation of the number of young
genes (Ma et al. 2022). We obtained gene age for human Y genes
through the analysis of 15 representative mammals (Cortez et al.
2014). Notably, Y gene ages are defined as the time when they
began to evolve independently from their X counterpart or
when they translocated from other chromosomes to the Y
Chromosome owing to gene traffic (transposition/translocation)
(Cortez et al. 2014). For the remaining Ensembl v110 genes lacking
age information, we dated them using the synteny-based method
with the gene order information from Ensembl database (v110),
following the phylogenetic framework of GenTree (Shao et al.
2019). These comprehensive methods resulted in the categoriza-
tion of 19,665 protein-coding genes into distinct gene age groups,
encompassing evolutionary stages from Euteleostomi (br0O) to the

human lineage (br14). We did not differentiate Euteleostomi-spe-
cific genes from more ancient genes because the synteny-based
method reveals a faster decay of synteny than sequence similarity
in ancient genes (Arendsee et al. 2019), making it complicated to
determine accurate ancient branches for ancient genes. We
merged Euteleostomi-specific and more ancient genes into “br0”
(labeled with “Euteleostomi” in this study), following the syn-
teny-based method in previous studies (Zhang et al. 2010; Shao
et al. 2019).

The HPO annotation used in this study for phenotypic
abnormalities contains disease genes corresponding to organ/
tissue systems (September 19, 2023; https://hpo.jax.org/app/data/
annotations). This repository synthesizes information from diverse
databases, including Orphanet (Weinreich et al. 2008), DECIPHER
(Wright 2015), and OMIM (Hamosh et al. 2000). After filtering out
mitochondrial genes, unplaced genes, RNA genes, and genes relat-
ed to neoplasm ontology, we obtained gene ages and phenotypic
abnormalities (across 22 categories) for 4946 protein-coding genes.
The reproductive system disease genes were retrieved from the
“phenotype_to_genes.txt” file by using a grep shell script with
the keywords “reproduct,” “male,” and “female” (neoplasm-relat-
ed items were removed).

Logistic regression modeling and model comparison

We retrieved the gene-wise burdens of rare de novo germline var-
iants from multiple studies, including the Gene4Denovo database
(68,404 individuals) (Zhao et al. 2020; http://www.genemed.tech/
gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2
.txt), and burden scores of ultrarare loss-of-function variants from
UK Biobank exomes (394,783 individuals) (Supplemental Table 1
in a previous study; Weiner et al. 2023). The gene-wise burdens
of rare variants at the population level were estimated with data
from the whole-genome sequencing genotypes and allele frequen-
cies of gnomAD database (version 4.1.0 of 76,215 individuals)
(Wang et al. 2022; Greene et al. 2023; all chromosome VCF files
from https://gnomad.broadinstitute.org/downloads). Rare vari-
ants were extracted based on a MAF lower than 0.0001 across all
major human populations (all human male, all human female,
African population, non-Finish European population, East Asian
population, South Asian population, and Latino/Admixed
American population).

We conducted the stratified logistic regression to account for
effects of multiple predictors and their interactions on the out-
come of gene disease states. The disease and nondisease genes
were assigned into binary states (“1,” disease genes; “0,” nondi-
sease genes) as a response variable. A step-by-step procedure was
performed for multiple predictors, which include gene age (T;
mya), gene length (L,) or protein length (L), DNV burden (D)
(Wang et al. 2022), and rare variant burden (R) (Chen et al.
2024b). The LRT and AIC were used for model comparison.
Lower AIC was preferred if the same degree of freedom was detect-
ed. The model with significant LRT P-value (P<0.05) was chosen
when comparing nested models. To account for different scales
in variables and potential influence of extreme values, the vari-
ables with logarithm treatment were also incorporated in some
models. The VIF values were used to account for the multicol-
linearity among variables. The “glm” package (binomial model)
in R platform was used for computing the models (https:/www
.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm).

K,/ K; ratio

Ka/K; is widely used in evolutionary genetics to estimate the rela-
tive strength of purifying selection (K,/Ks<1), neutral mutations

388 Genome Research
www.genome.org


https://hpo.jax.org/app/data/annotations
https://hpo.jax.org/app/data/annotations
https://hpo.jax.org/app/data/annotations
https://hpo.jax.org/app/data/annotations
https://hpo.jax.org/app/data/annotations
https://hpo.jax.org/app/data/annotations
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://www.genemed.tech/gene4denovo/uploads/gene4denovo/All_De_novo_mutations_1.2.txt
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279498.124/-/DC1
https://gnomad.broadinstitute.org/downloads
https://gnomad.broadinstitute.org/downloads
https://gnomad.broadinstitute.org/downloads
https://gnomad.broadinstitute.org/downloads
https://gnomad.broadinstitute.org/downloads
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm
http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on October 9, 2025 - Published by Cold Spring Harbor Laboratory Press

New gene origination and human genetic diseases

(Ka/Ks=1), and potentially beneficial mutations (K,/Ks>1) on ho-
mologous protein-coding genes. K, is the number of nonsynony-
mous substitutions per nonsynonymous site, and K; is the
number of synonymous substitutions per synonymous site that
is assumed to be neutral. The pairwise K,/K; ratios (human-chim-
panzee, human-bonobo, and human-macaque) were retrieved
from the Ensembl database (v99) (Flicek et al. 2014), as estimated
with the maximum likelihood algorithm (Yang 2007).

Disease gene emergence rate per million years (r)

To understand the origination tempo of disease genes within dif-
ferent evolutionary phylostrata, we estimated the disease gene
emergence rate per million years r for disease genes, which is the
fractions of disease genes per million years for each evolutionary
branch. The calculation was based on the following formula:

TAT

Ti

where r; represents the phenotype integration index for ancestral
branch i, and O; indicates the number of disease genes with OPs
in ancestral branch i. The denominator 4; is the number of genes
with gene age information in branch i. The T; represents the
time obtained from the TimeTree database (Kumar et al. 2017;
http://www.timetree.org).

Pleiotropic modeling with logistic growth function

For each evolutionary phylostratum (f), we estimated median OP
numbers that genic defects could affect, which serve as the proxy
of pleiotropy over evolutionary time (P(f)) for regression analysis.
The logistic growth function was used to fit the correlation with
the nonlinear least squares in R (R Core Team 2023).

Phenotype enrichment along evolutionary stages

The phenotype enrichment along phylostrata was evaluated based
on a phenotype enrichment index (PEI). Specifically, within
“gene-phenotype” links, there are two types of contributions for
a phenotype, which are “one gene, many phenotypes” owing
to potential pleiotropism as well as “one gene, one phenotype.”
Considering the weighting differences between these two catego-
ries, we estimated the PEI(ij) for a given phenotype (p;) within
an evolutionary stage (br;) with the following formula:

1
n

T
1
Y XK

k=1 g

PEl;; =

where m indicates the number of phenotype(s) one gene can af-
fect, nrepresents the number of genes identified for a given pheno-
type, and / is number of phenotypes within a given evolutionary
stage. Considering the genetic complexity of phenotypes, PEI first-
ly adjusted the weights of genes related to a phenotype with the re-

1
ciprocal value of m, that is, poos Thus, the more phenotypes a gene

affects, the less contributing weight this gene has. Here, m; is the
number of phenotypes affected by the ith gene, n is the total num-
ber of genes associated with the specific phenotype p;, n; is the
number of genes associated with the jth phenotype within the
evolutionary stage, and m is the number of phenotypes affected
by the kth gene within the jth phenotype. Then, we can obtain
the accumulative value (p) of the adjusted weights of all genes
for a specific phenotype within an evolutionary stage. Because of

the involvement of multiple phenotypes within an evolutionary
stage, we summed weight values for all phenotypes (Z;:l P)
and finally obtained the percentage of each phenotype within

1

each stage (
J=1

) as the enrichment index.

Linear regression and excessive rate

The linear regression for disease genes and total genes on chromo-
somes was based on the simple hypothesis that the number of dis-
ease genes would be dependent on the number of total genes on
chromosomes. The linear regression and statistics were analyzed
with R platform. The excessive rate was calculated as the percent-
ages of the vertical difference between a specific data point, which
is the number of gene within a chromosome (n), and the expected
value based on linear model (n—e) out of the expected value

(=)

Analyses on X-conserved and X-added regions

The Eutherian X Chromosome is composed of the pseudoautoso-
mal regions (PARs), X-conserved region, and X-added region. The
regions of two PARs were determined based on NCBI assembly
annotation of GRCh38.p13 (X:155701383-156030895 and X:10
001-2781479). The X-boundary between X-conserved and X-
added regions was determined with the Ensembl biomart tool.
The “one-to-one” orthologous genes between human and opos-
sum were used for gene synteny identification. The X-conserved
region is shared between human and opossum, whereas the X-add-
ed region in human has synteny with the autosomal genes of opos-
sum (Ross et al. 2005). The “evolutionary strata” on X were based
on previous reports of two methods: the substitutions method and
the segmentation and clustering method (Lahn and Page 1999;
McLysaght 2008; Pandey et al. 2013). The coordinates of strata
boundaries were up-lifted into hg38 genome with liftOver (https
://genome.ucsc.edu/cgi-bin/hgLiftOver).

Software availability

All rare variants data files (MAF lower than 0.0001) generated in
this study and the R script for modeling have been submitted to
Zenodo (https://zenodo.org/uploads/11000269). The R script is
also available as Supplemental Code.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

M.L. was supported by the John Simon Guggenheim Memorial
Fellowship for Natural Sciences (2022) and the University of
Chicago Division of Biological Sciences, the National Institutes
of Health (1RO1GM116113-01A1), and the National Science
Foundation (NSF2020667). D.A. was supported by National
Institutes of Health (F32GM146423). We greatly appreciate the
constructive discussions with Dr. Stefano Allesina, Dr. Urs
C. Schmidt-Ott, and Dr. Greg Dwyer of the University of
Chicago; Dr. Anne O’Donnell Luria of the Broad Institute of
Massachusetts Institute of Technology and Harvard; Dr. Cheng
Deng of Western China Hospital; and Dr. Chuanzhu Fan from
Wayne State University. Special acknowledgment is given to
Xuefei He from Western China Hospital for designing the

Genome Research 389
www.genome.org


http://www.timetree.org
http://www.timetree.org
http://www.timetree.org
http://www.timetree.org
http://www.timetree.org
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://zenodo.org/uploads/11000269
https://zenodo.org/uploads/11000269
https://zenodo.org/uploads/11000269
https://zenodo.org/uploads/11000269
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279498.124/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on October 9, 2025 - Published by Cold Spring Harbor Laboratory Press

Chen et al.

silhouettes. We thank the maintainers and contributors of the
HPO data.

Author contributions: J.-H.C., P.L., and M.L. conceived the
study. J.-H.C. and M.L. designed the methodology. P.L., D.A,,
and A.G. performed data curation and investigation. J.-H.C. and
P.L. conducted analyses and wrote the original draft. M.L. and
B.S. supervised the study, and all authors reviewed and edited
the manuscript.

References

Antonarakis SE, Beckmann JS. 2006. Mendelian disorders deserve more at-
tention. Nat Rev Genet 7: 277-282. doi:10.1038/nrg1826

Arendsee Z, Li], Singh U, Bhandary P, Seetharam A, Wurtele ES. 2019. fagin:
synteny-based phylostratigraphy and finer classification of young
genes. BMC Bioinformatics 20: 440. doi:10.1186/512859-019-3023-y

Baatz M, Wagner GP. 1997. Adaptive inertia caused by hidden pleiotropic
effects. Theor Popul Biol 51: 49-66. doi:10.1006/tpbi.1997.1294

Baertsch R, Diekhans M, Kent W], Haussler D, Brosius J. 2008. Retrocopy
contributions to the evolution of the human genome. BMC Genomics
9: 466. d0i:10.1186/1471-2164-9-466

Barton NH. 1990. Pleiotropic models of quantitative variation. Genetics
124: 773-782. doi:10.1093/genetics/124.3.773

Bellott DW, Skaletsky H, Pyntikova T, Mardis ER, Graves T, Kremitzki C,
Brown LG, Rozen S, Warren WC, Wilson RK, et al. 2010. Convergent
evolution of chicken Z and human X chromosomes by expansion and
gene acquisition. Nature 466: 612-616. doi:10.1038/nature09172

Betrdn E, Long M. 2022. Evolutionary new genes in a growing paradigm.
Genes (Basel) 13: 1605. doi:10.3390/genes13091605

Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE. 2013. Rare-disease
genetics in the era of next-generation sequencing: discovery to transla-
tion. Nat Rev Genet 14: 681-691. do0i:10.1038/nrg3555

Brosius J. 1991. Retroposons: seeds of evolution. Science 251: 753. doi:10
.1126/science.1990437

Carelli FN, Hayakawa T, Go Y, Imai H, Warnefors M, Kaessmann H.
2016. The life history of retrocopies illuminates the evolution of new
mammalian genes. Genome Res 26: 301-314. doi:10.1101/gr.198473
115

Carroll SB. 2005. Evolution at two levels: on genes and form. PLoS Biol 3:
€245. doi:10.1371/journal.pbio.0030245

Carvunis AR, Rolland T, Wapinski I, Calderwood MA, Yildirim MA, Simonis
N, Charloteaux B, Hidalgo CA, Barbette J, Santhanam B, et al. 2012.
Proto-genes and de novo gene birth. Nature 487: 370-374. doi:10
.1038/nature11184

Charlesworth B, Coyne JA, Barton NH. 1987. The relative rates of evolution
of sex chromosomes and autosomes. Am Nat 130: 113-146. doi:10
.1086/284701

Charlesworth B, Morgan MT, Charlesworth D. 1993. The effect of deleteri-
ous mutations on neutral molecular variation. Genetics 134: 1289-
1303. doi:10.1093/genetics/134.4.1289

Chen S, Krinsky BH, Long M. 2013. New genes as drivers of phenotypic evo-
lution. Nat Rev Genet 14: 645-660. doi:10.1038/nrg3521

Chen J, He X, Jakovlic I. 2022. Positive selection-driven fixation of a hom-
inin-specific amino acid mutation related to dephosphorylation in
IRF9. BMC Ecol Evol 22: 132. doi:10.1186/512862-022-02088-5

Chen J, Jia Y, Zhong J, Zhang K, Dai H, He G, Li F, Zeng L, Fan C,
Xu H. 2024a. Novel mutation leading to splice donor loss in a con-
served site of DMD gene causes Duchenne muscular dystrophy with
cryptorchidism. | Med Genet 61: 741-749. doi:10.1136/jmg-2024-
109896

Chen §, Francioli LC, Goodrich JK, Collins RL, Kanai M, Wang Q, Alf6ldi J,
Watts NA, Vittal C, Gauthier LD, et al. 2024b. A genomic mutational
constraint map using variation in 76,156 human genomes. Nature
625: 92-100. doi:10.1038/541586-023-06045-0

Ciccarelli FD, von Mering C, Suyama M, Harrington ED, Izaurralde E, Bork P.
2005. Complex genomic rearrangements lead to novel primate gene
function. Genome Res 15: 343-351. doi:10.1101/gr.3266405

Claussnitzer M, Cho JH, Collins R, Cox NJ, Dermitzakis ET, Hurles ME,
Kathiresan S, Kenny EE, Lindgren CM, MacArthur DG, et al. 2020. A
brief history of human disease genetics. Nature 577: 179-189. doi:10
.1038/s41586-019-1879-7

Conrad B, Antonarakis SE. 2007. Gene duplication: a drive for phenotypic
diversity and cause of human disease. Annu Rev Genomics Hum Genet
8: 17-35. doi:10.1146/annurev.genom.8.021307.110233

Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD,
Griitzner F, Kaessmann H. 2014. Origins and functional evolution of
Y chromosomes across mammals. Nature 508: 488-493. doi:10.1038/
naturel3151

Des Marais DL, Rausher MD. 2008. Escape from adaptive conflict after dupli-
cation in an anthocyanin pathway gene. Nature 454: 762-765. doi:10
.1038/nature07092

Dezs6 Z, Nikolsky Y, Sviridov E, Shi W, Serebriyskaya T, Dosymbekov D,
Bugrim A, Rakhmatulin E, Brennan RJ, Guryanov A, et al. 2008. A com-
prehensive functional analysis of tissue specificity of human gene ex-
pression. BMC Biol 6: 49. d0i:10.1186/1741-7007-6-49

Ding D, Nguyen TT, Pang MYH, Ishibashi T. 2021. Primate-specific histone
variants. Genome 64: 337-346. doi:10.1139/gen-2020-0094

Domazet-LoSo T, Tautz D. 2008. An ancient evolutionary origin of genes as-
sociated with human genetic diseases. Mol Biol Evol 25: 2699-2707.
doi:10.1093/molbev/msn214

Domazet-LoSo T, Brajkovic J, Tautz D. 2007. A phylostratigraphy approach
to uncover the genomic history of major adaptations in metazoan line-
ages. Trends Genet 23: 533-539. doi:10.1016/].tig.2007.08.014

Eckman O]. 1788. The description and multiple causes of osteomalaciae sistens.
Uppsala, Sweden.

Emerson J, Kaessmann H, Betran E, Long M. 2004. Extensive gene traffic on
the mammalian X chromosome. Science 303: 537-540. doi:10.1126/sci
ence.1090042

Fetro C, Scherman D. 2020. Drug repurposing in rare diseases: myths and
reality. Therapies 75: 157-160. doi:10.1016/j.therap.2020.02.006

Fleck K, Luria V, Garag N, Karger A, Hunter T, Marten D, Phu W, Nam KM,
Sestan N, O’Donnell-Luria AH, et al. 2024. Functional associations of
evolutionarily recent human genes exhibit sensitivity to the 3D genome
landscape and disease. bioRxiv doi:10.1101/2024.03.17.585403

Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, Carvalho-Silva D,
Clapham P, Coates G, Fitzgerald S, et al. 2014. Ensembl 2014. Nucleic
Acids Res 42: D749-D755. doi:10.1093/nar/gkt1196

Fraisse C, Puixeu Sala G, Vicoso B. 2019. Pleiotropy modulates the efficacy
of selection in Drosophila melanogaster. Mol Biol Evol 36: 500-515. doi:10
.1093/molbev/msy246

Gibson G. 2012. Rare and common variants: twenty arguments. Nat Rev
Genet 13: 135-145. doi:10.1038/nrg3118

Greene D, Pirri D, Frudd K, Sackey E, Al-Owain M, Giese APJ, Ramzan K, Riaz
S, Yamanaka I, Boeckx N, et al. 2023. Genetic association analysis of
77,539 genomes reveals rare disease etiologies. Nat Med 29: 679-688.
doi:10.1038/541591-023-02211-z

Guillaume F, Otto SP. 2012. Gene functional trade-offs and the evolution of
pleiotropy. Genetics 192: 1389-1409. doi:10.1534/genetics.112.143214

Guo MH, Plummer L, Chan YM, Hirschhorn JN, Lippincott MF. 2018.
Burden testing of rare variants identified through exome sequencing
via publicly available control data. Am | Hum Genet 103: 522-534.
doi:10.1016/j.ajhg.2018.08.016

Halvorsen M, Huh R, Oskolkov N, Wen ], Netotea S, Giusti-Rodriguez P,
Karlsson R, Bryois J, Nystedt B, Ameur A, et al. 2020. Increased burden
of ultra-rare structural variants localizing to boundaries of topologically
associated domains in schizophrenia. Nat Commun 11: 1842. doi:10
.1038/s41467-020-15707-w

Hamosh A, Scott AF, Amberger ], Valle D, McKusick VA. 2000. Online
Mendelian inheritance in man (OMIM). Hum Mutat 15: 57-61. doi:10
.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G

He X, Zhang J. 2005. Rapid subfunctionalization accompanied by pro-
longed and substantial neofunctionalization in duplicate gene evolu-
tion. Genetics 169: 1157-1164. doi:10.1534/genetics.104.037051

Hodgkin J. 1998. Seven types of pleiotropy. Int ] Dev Biol 42: 501-5035.

Hoekstra HE, Coyne JA. 2007. The locus of evolution: evo devo and the ge-
netics of adaptation. Evolution 61: 995-1016. doi:10.1111/j.1558-5646
.2007.00105.x

JiaY, Chen ], Zhong ], He X, Zeng L, Wang Y, Li ], Xia S, Ye E, Zhao ], et al.
2023. Novel rare mutation in a conserved site of PTPRB causes human
hypoplastic left heart syndrome. Clin Genet 103: 79-86. doi:10.1111/
cge.14234

Jiang L, Jiang H, Dai S, Chen Y, Song Y, Tang Clara S-M, Pang SY-Y, Ho S-L,
Wang B, Garcia-Barcelo M-M, et al. 2022. Deviation from baseline mu-
tation burden provides powerful and robust rare-variants association
test for complex diseases. Nucleic Acids Res 50: e34. doi:10.1093/nar/
gkab1234

Kaessmann H. 2010. Origins, evolution, and phenotypic impact of new
genes. Genome Res 20: 1313-1326. doi:10.1101/gr.101386.109

Kaessmann H, Zollner S, Nekrutenko A, Li WH. 2002. Signatures of domain
shuffling in the human genome. Genome Res 12: 1642-1650. doi:10
.1101/gr.520702

Kasinathan B, Colmenares SU III, McConnell H, Young JM, Karpen GH,
Malik HS. 2020. Innovation of heterochromatin functions drives rapid
evolution of essential ZAD-ZNF genes in Drosophila. eLife 9: e63368.
doi:10.7554/eLife.63368

Kingdom R, Beaumont RN, Wood AR, Weedon MN, Wright CF. 2024.
Genetic modifiers of rare variants in monogenic developmental disor-
der loci. Nat Genet 56: 861-868. doi:10.1038/s41588-024-01710-0

390 Genome Research
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on October 9, 2025 - Published by Cold Spring Harbor Laboratory Press

New gene origination and human genetic diseases

Klomp J, Athy D, Kwan CW, Bloch NI, Sandmann T, Lemke S, Schmidt-Ott
U. 2015. A cysteine-clamp gene drives embryo polarity in the midge
Chironomus. Science 348: 1040-1042. doi:10.1126/science.aaa7105

Kohler S, Carmody L, Vasilevsky N, Jacobsen JOB, Danis D, Gourdine J-P,
Gargano M, Harris NL, Matentzoglu N, McMurry JA, et al. 2019.
Expansion of the human phenotype ontology (HPO) knowledge base
and resources. Nucleic Acids Res 47: D1018-D1027. doi:10.1093/nar/
gky1105

Kumar S, Stecher G, Suleski M, Hedges SB. 2017. TimeTree: a resource for
timelines, timetrees, and divergence times. Mol Biol Evol 34: 1812—
1819. doi:10.1093/molbev/msx116

Lahn BT, Page DC. 1999. Four evolutionary strata on the human X chromo-
some. Science 286: 964-967. doi:10.1126/science.286.5441.964

Lee S, Abecasis Gongalo R, Boehnke M, Lin X. 2014. Rare-variant association
analysis: study designs and statistical tests. Am ] Hum Genet 95: 5-23.
doi:10.1016/j.ajhg.2014.06.009

Li H, Chen C, Wang Z, Wang K, Li Y, Wang W. 2021. Pattern of new gene
origination in a special fish lineage, the flatfishes. Genes (Basel) 12:
1819. doi:10.3390/genes12111819

Lobo I. 2008. Pleiotropy: one gene can affect multiple traits. Nat Educ 1: 10.

Long M, Langley CH. 1993. Natural selection and the origin of jingwei, a chi-
meric processed functional gene in Drosophila. Science 260: 91-95.
doi:10.1126/science.7682012

Long M, VanKuren NW, Chen S, Vibranovski MD. 2013. New gene evolu-
tion: little did we know. Annu Rev Genet 47: 307-333. doi:10.1146/
annurev-genet-111212-133301

Luria V, Ma S, Shibata M, Pattabiraman K, Sestan N. 2023. Molecular and
cellular mechanisms of human cortical connectivity. Curr Opin
Neurobiol 80: 102699. doi:10.1016/j.conb.2023.102699

Ma C, Li C, Ma H, Yu D, Zhang Y, Zhang D, Su T, Wu J, Wang X, Zhang L,
et al. 2022. Pan-cancer surveys indicate cell cycle-related roles of pri-
mate-specific genes in tumors and embryonic cerebrum. Genome Biol
23: 251. doi:10.1186/s13059-022-02821-9

Marques AC, Dupanloup I, Vinckenbosch N, Reymond A, Kaessmann H.
2005. Emergence of young human genes after a burst of retroposition
in primates. PLoS Biol 3: €357. doi:10.1371/journal.pbio.0030357

McLysaght A. 2008. Evolutionary steps of sex chromosomes are reflected in
retrogenes. Trends Genet 24: 478-481. doi:10.1016/].tig.2008.07.006

Mendel JG. 1866. Experiments in plant hybridization. Verhandlungen des
naturforschenden Vereines in Brunn 4: 3-47.

Miller D, Chen J, Liang ], Betran E, Long M, Sharakhov IV. 2022. Retrogene
duplication and expression patterns shaped by the evolution of sex
chromosomes in malaria mosquitoes. Genes (Basel) 13: 968. doi:10
.3390/genes13060968

Montaiiés JC, Huertas M, Messeguer X, Alba MM. 2023. Evolutionary trajec-
tories of new duplicated and putative de novo genes. Mol Biol Evol 40:
msad098. doi:10.1093/molbev/msad098

Nei M. 2013. Mutation-driven evolution. Oxford University Press, Oxford.

Neme R, Tautz D. 2013. Phylogenetic patterns of emergence of new genes
support a model of frequent de novo evolution. BMC Genomics 14:
117. doi:10.1186/1471-2164-14-117

Orr HA. 2000. Adaptation and the cost of complexity. Evolution 54: 13-20.
doi:10.1111/j.0014-3820.2000.tb00002.x

Pandey RS, Wilson Sayres MA, Azad RK. 2013. Detecting evolutionary strata
on the human X chromosome in the absence of gametologous Y-linked
sequences. Genome Biol Evol 5: 1863-1871. doi:10.1093/gbe/evt139

Paul D. 2000. A double-edged sword. Nature 405: 515. doi:10.1038/
35014676

Pavlicev M, Wagner GP. 2022. The value of broad taxonomic comparisons
in evolutionary medicine: Disease is not a trait but a stafe of a trait!
MedComm (2020) 3: e174. doi:10.1002/mco02.174

Prabh N, Roeseler W, Witte H, Eberhardt G, Sommer RJ, Rodelsperger C.
2018. Deep taxon sampling reveals the evolutionary dynamics of novel
gene families in Pristionchus nematodes. Genome Res 28: 1664-1674.
doi:10.1101/gr.234971.118

Purcell SM, Moran JL, Fromer M, Ruderfer D, Solovieff N, Roussos P,
O’Dushlaine C, Chambert K, Bergen SE, Kdhler A, et al. 2014. A polygen-
ic burden of rare disruptive mutations in schizophrenia. Nature 506:
185-190. doi:10.1038/nature12975

Pyeritz RE. 1989. Pleiotropy revisited: molecular explanations of a classic
concept. Am | Med Genet 34: 124-134. doi:10.1002/ajmg.1320340120

Quiver MH, Lachance J. 2022. Adaptive eQTLs reveal the evolutionary im-
pacts of pleiotropy and tissue-specificity while contributing to health
and disease. HGG Adv 3: 100083. doi:10.1016/j.xhgg.2021.100083

Ragsdale EJ, Miiller Manuela R, Rodelsperger C, Sommer Ralf J. 2013. A
developmental switch coupled to the evolution of plasticity acts
through a sulfatase. Cell 155: 922-933. doi:10.1016/j.cell.2013.09.054

R Core Team. 2023. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna. https://www.R-project
.org/.

Rice WR. 1984. Sex chromosomes and the evolution of sexual dimorphism.
Evolution 38: 735-742. doi:10.2307/2408385

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde
M, Lyon E, Spector E, et al. 2015. Standards and guidelines for the inter-
pretation of sequence variants: a joint consensus recommendation of
the American College of Medical Genetics and Genomics and the
Association for Molecular Pathology. Genet Med 17: 405-424. doi:10
.1038/gim.2015.30

Ross MT, Gratham DV, Coffey A]J, Scherer S, McLay K, Muzny D, Platzer M,
Howell GR, Burrows C, Bird CP, et al. 2005. The DNA sequence of
the human X chromosome. Nature 434: 325-337. doi:10.1038/
nature03440

Ross BD, Rosin L, Thomae AW, Hiatt MA, Vermaak D, de la Cruz AFA, Imhof
A, Mellone BG, Malik HS. 2013. Stepwise evolution of essential centro-
mere function in a Drosophila neogene. Science 340: 1211-1214. doi:10
.1126/science.1234393

ShaoY, Chen C, Shen H, He BZ, Yu D, Jiang S, Zhao S, Gao Z, Zhu Z, Chen X,
et al. 2019. GenTree, an integrated resource for analyzing the evolution
and function of primate-specific coding genes. Genome Res 29: 682-696.
doi:10.1101/gr.238733.118

Shi L, Su B. 2012. Identification and functional characterization of a pri-
mate-specific E2F1 binding motif regulating MCPH1 expression. FEBS
J 279: 491-503. doi:10.1111/j.1742-4658.2011.08441.x

Stolk P, Willemen M]J, Leufkens HG. 2006. Rare essentials: drugs for rare dis-
eases as essential medicines. Bull World Health Organ 84: 745-751.
doi:10.2471/BLT.06.031518

Tyler AL, Asselbergs FW, Williams SM, Moore JH. 2009. Shadows of com-
plexity: what biological networks reveal about epistasis and pleiotropy.
BioEssays 31: 220-227. doi:10.1002/bies.200800022

VanKuren NW, Long M. 2018. Gene duplicates resolving sexual conflict
rapidly evolved essential gametogenesis functions. Nat Ecol Evol 2:
705-712. doi:10.1038/s41559-018-0471-0

VanKuren NW, Chen J, Long M. 2024. Sexual conflict drive in the rapid evo-
lution of new gametogenesis genes. Semin Cell Dev Biol 159-160: 27-37.
doi:10.1016/j.semcdb.2024.01.005

Van Oss SB, Carvunis AR. 2019. De novo gene birth. PLoS Genet 15:
€1008160. doi:10.1371/journal.pgen.1008160

Vonica A, Bhat N, Phan K, Guo J, Iancu L, Weber JA, Karger A, Cain JW,
Wang ECE, DeStefano GM, et al. 2020. Apcdd1 is a dual BMP/Wnt in-
hibitor in the developing nervous system and skin. Dev Biol 464: 71—
87.doi:10.1016/j.ydbio.2020.03.015

Wagner GP, Zhang J. 2011. The pleiotropic structure of the genotype-phe-
notype map: the evolvability of complex organisms. Nat Rev Genet 12:
204-213. doi:10.1038/n1g2949

Wang Q, Dhindsa RS, Carss K, Harper AR, Nag A, Tachmazidou I, Vitsios D,
Deevi SVV, Mackay A, Muthas D, et al. 2021. Rare variant contribution
to human disease in 281,104 UK Biobank exomes. Nature 597: 527-532.
doi:10.1038/541586-021-03855-y

Wang T, Kim CN, Bakken TE, Gillentine MA, Henning B, Mao Y, Gilissen C,
Consortium TS, Nowakowski T]J, Eichler EE, et al. 2022. Integrated gene
analyses of de novo variants from 46,612 trios with autism and develop-
mental disorders. Proc Natl Acad Sci 119: €2203491119. doi:10.1073/
pnas.2203491119

Wang RJ, Al-Saffar SI, Rogers J, Hahn MW. 2023. Human generation times
across the past 250,000 years. Sci Adv 9: eabm7047. doi:10.1126/
sciadv.abm7047

Weiner DJ, Nadig A, Jagadeesh KA, Dey KK, Neale BM, Robinson EB,
Karczewski KJ, O’Connor LJ. 2023. Polygenic architecture of rare coding
variation across 394,783 exomes. Nature 614: 492-499. doi:10.1038/
541586-022-05684-z

Weinreich SS, Mangon R, Sikkens JJ, Teeuw ME, Cornel MC. 2008.
Orphanet: a European database for rare diseases. Ned Tijdschr Geneeskd
152: 518-519.

Wray GA. 2007. The evolutionary significance of cis-regulatory mutations.
Nat Rev Genet 8: 206-216. doi:10.1038/nrg2063

Wright S. 1984. Evolution and the genetics of populations, volume 4: variability
within and among natural populations. University of Chicago Press,
Chicago.

Wright ES. 2015. DECIPHER: harnessing local sequence context to improve
protein multiple sequence alignment. BMC Bioinformatics 16: 322.
doi:10.1186/512859-015-0749-z

Wu C-I, Davis AW. 1993. Evolution of postmating reproductive isolation:
the composite nature of Haldane’s rule and its genetic bases. Am Nat
142: 187-212. doi:10.1086/285534

Wu D-D, Irwin DM, Zhang Y-P. 2011. De novo origin of human protein-
coding genes. PLoS Genet 7: e1002379. doi:10.1371/journal.pgen
1002379

Xia S, Chen J, Arsala D, Emerson JJ, Long M. 2025. Functional innovation
through new genes as a general evolutionary process. Nat Genet 57:
295-309. doi:10.1038/541588-024-02059-0

Genome Research 391
www.genome.org


https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on October 9, 2025 - Published by Cold Spring Harbor Laboratory Press

Chen et al.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol
Biol Evol 24: 1586-1591. doi:10.1093/molbev/msmO088

Yang Z, Bielawski JP. 2000. Statistical methods for detecting molecular adap-
tation. Trends Ecol Evol (Amst) 15: 496-503. doi:10.1016/S0169-5347
(00)01994-7

Zeng ZB, Hill WG. 1986. The selection limit due to the conflict between
truncation and stabilizing selection with mutation. Genetics 114:
1313-1328. doi:10.1093/genetics/114.4.1313

ZhangJ. 2023. Patterns and evolutionary consequences of pleiotropy. Annu
Rev Ecol Evol Syst 54: 1-19. doi:10.1146/annurev-ecolsys-022323-
083451

Zhang YE, Long M. 2014. New genes contribute to genetic and phenotypic
novelties in human evolution. Curr Opin Genet Dev 29: 90-96. doi:10
.1016/j.gde.2014.08.013

Zhang YE, Vibranovski MD, Landback P, Marais GA, Long M. 2010.
Chromosomal redistribution of male-biased genes in mammalian evo-
lution with two bursts of gene gain on the X chromosome. PLoS Biol
8: €1000494. doi:10.1371/journal.pbio.1000494

Zhang YE, Landback P, Vibranovski MD, Long M. 2011. Accelerated recruit-
ment of new brain development genes into the human genome. PLoS
Biol 9: €1001179. doi:10.1371/journal.pbio.1001179

Zhang YE, Landback P, Vibranovski M, Long M. 2012. New genes expressed
in human brains: implications for annotating evolving genomes.
BioEssays 34: 982-991. doi:10.1002/bies.201200008

Zhang D, Leng L, Chen C, Huang J, Zhang Y, Yuan H, Ma C, Chen H, Zhang
YE. 2022. Dosage sensitivity and exon shuffling shape the landscape of
polymorphic duplicates in Drosophila and humans. Nat Ecol Evol 6: 273—
287. doi:10.1038/541559-021-01614-w

Zhao G, LiK, Li B, Wang Z, Fang Z, Wang X, Zhang Y, Luo T, Zhou Q, Wang
L, et al. 2020. Gene4Denovo: an integrated database and analytic plat-
form for de novo mutations in humans. Nucleic Acids Res 48: D913—
D926. doi:10.1093/nar/gkz923

Zhu ], He F, Hu S, Yu]. 2008. On the nature of human housekeeping genes.
Trends Genet 24: 481-484. doi:10.1016/.tig.2008.08.004

Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, Daly M],
Neale BM, Sunyaev SR, Lander ES. 2014. Searching for missing heritabil-
ity: designing rare variant association studies. Proc Natl Acad Sci 111:
E455-E464. doi:10.1073/pnas.1322563111

Received April 21, 2024; accepted in revised form February 6, 2025.

392 Genome Research
www.genome.org


http://genome.cshlp.org/
http://www.cshlpress.com

Downloaded from genome.cshlp.org on October 9, 2025 - Published by Cold Spring Harbor Laboratory Press

ENOME
ESEARCH

Evolutionarily new genes in humans with disease phenotypes
reveal functional enrichment patterns shaped by adaptive
innovation and sexual selection

Jian-Hai Chen, Patrick Landback, Deanna Arsala, et al.

Genome Res. 2025 35: 379-392 originally published online February 14, 2025
Access the most recent version at doi:10.1101/gr.279498.124

Supplemental http://genome.cshlp.org/content/suppl/2025/03/04/gr.279498.124.DC1
Material

References This article cites 108 articles, 20 of which can be accessed free at:
http://[genome.cshlp.org/content/35/3/379.full.html#ref-list-1

Open Access  Freely available online through the Genome Research Open Access option.

Creative This article, published in Genome Research, is available under a Creative
Commons Commons License (Attribution 4.0 International), as described at
License http://creativecommons.org/licenses/by/4.0/.

Email Alerting  Receive free email alerts when new articles cite this article - sign up in the box at the
Service top right corner of the article or click here.

i,
2 A

To subscribe to Genome Research go to:
https://genome.cshlp.org/subscriptions

© 2025 Chen et al.; Published by Cold Spring Harbor Laboratory Press


http://genome.cshlp.org/lookup/doi/10.1101/gr.279498.124
http://genome.cshlp.org/content/suppl/2025/03/04/gr.279498.124.DC1
http://genome.cshlp.org/content/35/3/379.full.html#ref-list-1
http://creativecommons.org/licenses/by/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.279498.124&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.279498.124.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=57980&adclick=true&url=https%3A%2F%2Fnanoporetech.com%2Fapplications%2Fresearch-areas%2Fhuman-genomics%3Futm_campaign%3D5754957-Human%2BComplex%2B25%26utm_source%3DCSHL%26utm_medium%3Dbanner%26utm_content%3DAMR_CSH
https://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

