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As a Nobel Prize-winning discovery, transposable elements, or “jumping genes”, have attracted significant interest
due to their roles in providing functional coding and regulatory sequences. A longstanding hypothesis suggests
that somatic transposition may preferentially occur in the mammalian brain, contributing to neuronal diversity.
Here, we aim to provide the latest overview of somatic transposition studies in the human brain. We first in-
troduce the historical context and the limited studies on the functionality of somatic transposition, indicating
its pathogenic role. We then highlight the wide variability in somatic transposition rate estimates across stud-
ies, discussing the complexities—such as artificial chimeras and the multicopy nature—that contribute to false
positive and negative results. We also review the evolving experimental and computational methods designed
to mitigate these challenges and briefly cover studies estimating germline transposition rate. Finally, we suggest
that advances in single-cell genome amplification methods, coupled with deep learning-based software, could
pave the way for more definitive studies on the prevalence and functional role of somatic transposition in the
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1. Introduction

Transposable elements (TEs), often termed “jumping genes”, are self-
ish genetic elements that increase their copy numbers by changing lo-
cations within the host genome. Since Dr. Barbara McClintock’s pio-
neering discovery of TEs in the 1940s [1,2], research interests have
been accumulating due to their prevalence in eukaryotic and prokary-
otic genomes, their mutagenic properties, and their roles in functional
evolution through the provision of coding and regulatory sequences [3—
6]. As in many other species, a substantial proportion (~46%) of the hu-
man reference genome is derived from TEs [7]. These TEs, resulting from
germline transposition events accumulated over long-term human evo-
lution, may confer domesticated functional roles shaped by natural se-
lection [8-10]. Compared to reference TEs, non-reference TEs, including
recently originated and de novo germline TE insertions, and somatic TE
insertions occurring post-zygotically, are less studied. Unlike germline
transposition, somatic transposition is particularly challenging to study
as only a subset of cells harbors the corresponding insertions. For hu-
mans, three types of TEs can contribute to somatic transposition due to
their mobility: autonomous Long interspersed element 1 (L1) and non-
autonomous Alu and SINE-VNTR-Alu (SVA), with the transposition of
Alu and SVA depending on L1 [11]. In 2005, the Gage lab proposed that
somatic transposition may preferentially occur in mammalian neurons,
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contributing to their functional diversity [12]. Despite extensive efforts
over the past two decades, the spatiotemporal mode and functional con-
sequences of somatic transposition remain largely unclear, with limited
studies supporting its pathogenic role. To summarize the discoveries in
this field, an excellent review was published in 2018, comprehensively
covering historical background, studies in various species, functional
consequences, and technical challenges [13]. Herein, we provide an
updated and focused overview of somatic transposition studies in the
human brain, addressing potential functionality, conflicting prevalence
estimates, experimental and computational advances, and promising re-
search directions. For comparison, we briefly describe studies estimating
germline transposition rates.

2. The enigmatic functionality of somatic transposition

Germline and somatic transposition have different functional out-
comes. Both types of mutations are subject to natural selection: germline
transposition at the organismal level and somatic transposition at the
cellular level. Germline TE insertions, especially those long fixed in hu-
mans, have undergone extensive positive and negative natural selection.
As a result, usually only neutral, nearly neutral, and beneficial inser-
tions have a higher chance to exist. Beneficial insertions become do-
mesticated, providing promoters, enhancers, insulators, and protein se-
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quences. In contrast, somatic TE insertions are subject to selection over
a much shorter timescale, potentially resulting in a relatively higher
proportion of deleterious or pathogenic insertions.

Consistently, limited studies indicate that somatic transposition
tends to be pathogenic. On the one hand, transposition events are of-
ten considered deleterious and have been observed in various cancers
[14], contributing to both driver and passenger mutations [15-17]. Sim-
ilarly, increased transposition rates have been noted in neurodevelop-
mental disorders such as schizophrenia [18] and Rett syndrome [19].
However, neurological disorders may also result from alternative mech-
anisms, such as the accumulation of TE-derived transcripts or DNA [20-
22]. On the other hand, in 10 cases, a single somatic TE insertion has
been implicated in directly causing diseases, such as hereditary tumors
or immune diseases [23-32].

Nonetheless, some studies suggest a beneficial role for somatic trans-
position. The most influential one among them is the aforementioned
Gage study, which proposed that transposition preferentially occurs
during normal brain development, contributing to neuronal diversity
[12,33-35]. However, there is hitherto no direct evidence supporting
the beneficial role of transposition in brain development.

3. The uncertain rate of somatic transposition

The functional impact of somatic transposition in the brain remains
unclear, partly due to the uncertainty in transposition rates. Extensive
efforts have been made to identify somatic transposition events in hu-
mans, particularly in the brain (Table 1). Transposition has been de-
tected in various regions, including the cerebral cortex and hippocam-
pus, and across various cell types, such as neurons and glia [36,37].
However, the reported quantities and rates of transposition vary widely,
ranging from 0 to over 80,000 per bulk study, and 0.04 to 80 insertions
per single cell (Table 1). Even within the same brain region and cell
type, discrepancies are notable; for instance, the per-cell rate for neu-
rons in the cerebral cortex in healthy individuals ranges from 0.07 [38]
to 16.3 [36]. This large contrast may stem from differences in the study
design, e.g., sequencing depth (especially across bulk samples), or ana-
lytical frameworks (see following sections). Notably, transposition rates
have been consistently evaluated for both neurons and glia within the
same studies, giving conflicting results. Some studies showed similar
rates: 0.1-0.2 insertions per cell in [39], ~1 insertion per cell in [37],
while others showed neurons contained more insertions than glia: 13.7
insertions per cell vs. 6.5 insertions per cell in [36].

The high uncertainty of transposition rates means that the temporal
mode of somatic transposition events, or whether they biasedly occur in
some developmental stage, is also unknown. Actually, as of 2024, only
five somatic TE insertions have been timed based on their frequencies
and distributions in the brain: one during the embryogenesis (morula)
stage [19], three in neuroepithelial cells during initial brain organo-
genesis [40,41], and one in a neocortical progenitor at a relatively late
stage [40]. Despite the small sample size, this dataset suggests that so-
matic transposition may preferentially occur during early brain devel-
opment.

Transposition rate studies in somatic tissues other than the brain are
scarce (Table 1). However, tissues from the heart, liver, and fibroblasts
have been used as controls in brain or cancer studies [14,19]. Only one
study estimated transposition rates across the brain and other tissues,
finding that the per-cell rate in prefrontal cortex neurons (1.22-1.36)
was higher than in heart, eye, and fibroblasts (0.54-0.69) [19]. Whether
this high neuronal activity is consistent across studies or in a broader
tissue panel requires further investigation.

4. The overall framework for somatic TE insertion identification
Detecting somatic TE insertions involves identifying sequence fea-

tures of transposition. For L1, transposition relies on target-primed re-
verse transcription (TPRT), resulting in target site duplications (TSDs)
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flanking the insertion site and the incorporation of a polyA tail (Fig. 1a).
These hallmark sequence features enable the identification of TE in-
sertions in paired-end short-read sequencing by generating two types
of supporting read pairs: clipped/split read pairs and discordant read
pairs (Fig. 1a). A clipped read pair includes at least one clipped read,
where one segment comes from the genomic sequence and the other
from the inserted TE sequence. A discordant read pair comprises two
reads with conflicting alignments: one read originates solely from the
genomic sequence adjacent to the insertion site, while the other read
entirely comes from the TE. Additionally, some clipped short-read pairs
can capture both sides of TE insertions, especially for small TEs like Alu
or severely truncated L1. In long-read sequencing, supporting reads in-
clude clipped/split reads and spanning reads capable of capturing entire
TE insertions (Fig. 1a).

Although the framework to identify somatic TE insertions seems
straightforward, challenges exist. First, TEs are notoriously difficult to
analyze due to their multicopy nature (Fig. 1b). Reads from TE inser-
tions close to preexisting reference TEs are typically unmappable due to
alignment ambiguity [61]. Second, artificial chimeras can emerge when
two genomic fragments are fused due to template switching during var-
ious steps of sequencing library preparation (Fig. 1b), such as PCR in
bulk libraries or amplification cycles in single-cell libraries [39]. If one
fragment involves a TE, the chimera can mimic signals like clipped/split
reads or discordant read pairs. Third, by definition, somatic TE inser-
tions are present in only a subset of cells. In bulk sequencing data from
many cells, true positive signals can be hard to identify due to limited
supporting reads or read pairs, which may be further obscured by map-
ping or chimera issues.

5. Experimental advancement to identify somatic TE insertions

To address these challenges, numerous efforts have been made to
improve experimental methods for detecting somatic transposition. The
initial report by the Gage lab detected somatic transposition in ro-
dent brains using an engineered human L1 reporter system (GFP, [12]),
which may not reflect in vivo transposition in humans. Subsequent work
implemented quantitative PCR (qPCR) to quantify somatic transposi-
tion rates in human brains [42]. However, this approach could be con-
founded by the accumulated TE sequences which are not integrated
into the genome, leading to an overestimation of the rate [13,62].
Consistently, the highest estimate of 80 insertions per cell was gen-
erated by qPCR (Table 1). Therefore, subsequent studies have gener-
ally taken sequencing-based approaches to detect supporting reads (e.g.,
clipped/split reads) and identify somatic transposition, evolving along
three dimensions (Fig. 1c).

First, compared to bulk sequencing, single-cell sequencing is gaining
popularity. A number of studies have used this approach to neurons or
glial cells in brain regions such as the hippocampus [36,37,55], cerebral
cortex [36-38,40], and caudate nucleus [38] (Table 1). This approach
increases the likelihood of detecting TE insertions shared by a small pro-
portion of cells, especially when a large number of cells are sequenced.
Moreover, reads derived from chimeras and TE insertions are often dis-
tinguishable, as chimeras typically do not reach the expected variant
allele frequency or fraction (VAF) of 0.5—unless they are generated
during the early amplification cycles. Single-cell sequencing also comes
with tradeoffs, such as high cost and the tendency of whole-genome am-
plification methods (e.g., MDA and MALBAC, Table 1) to under-amplify
TE regions which cause false negative calls of TE insertions [63]. Stud-
ies on mouse neurons and human colorectal epithelial cells have con-
verted single-cell sequencing to bulk sequencing by sequencing clones
developed from single cells to control chimeras or uneven DNA ampli-
fication [57,64]. This strategy is generally unsuitable for non-dividing
cells including mature adult neurons, but it could be applicable to re-
programmed neurons [64]. Additionally, generating enough clones is
labor-intensive, and somatic transposition may occur during clone de-
velopment.
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Table 1
Estimates of human somatic transposition rates.
Study?® Sample age®  Sequencing strategy Computational Tissue® Estimated somatic transposition rates?
method
L1 Alu SVA
Coufal etal.  postnatal bulk qPCR - HIP 80/cell - -
[42]
Baillie et al. postnatal bulk RC-seq® customized HIP, CN 7743/7 samples 0.04/cell® 13,692/7 1350/7
[43] pipeline [44] samples samples
Bundo et al.  postnatal bulk WGS customized PFC 2600/3 samples - -
[18] pipeline PFC from SZ patients 4213/3 samples - -
Kurnosov postnatal bulk targeted customized CB 1651/1 sample 1317/1 -
et al. [45] sequencing pipeline sample
FC 462/1 sample 2138/1 -
sample
svz 1133/1 sample 1308/1 -
sample
DG 3100/1 sample 2984/1 -
sample
myocardium 1151/1 sample 1243/1 -
sample
Upton et al. postnatal bulk RC-seq® customized liver 175/4 samples - -
[36] pipeline
Jacob-Hirsch - bulk WGS customized HIP, CB, OC 1911/5 samples - -
et al. [46] pipeline CB, OC, FC, SEGAs from 84,495/15 samples - -
AT, NSA, Rett, SEGA, and
TSC patients
Muiioz-Lopez embryonic bulk (MDA)"  RC-seq®, customized ICM of blastocysts 1/2 samples” - -
etal. [47] and newborn ATLAS-seq® pipeline
RC-seq® placenta 6/10 samples” - -
Zhao et al. postnatal bulk HAT-seq® customized PFC (neurons) 3170/5 samples 1.22/cell® - -
[19] pipeline PFC (neurons) from Rett 3291/5 samples 1.36/cell® - -
patients
heart 1170/5 samples 0.54/cell® - -
heart from Rett patients 580/2 samples 0.69/cell® - -
eye from Rett patients 563/2 samples 0.61/cell® - -
fibroblast from Rett 411/1 sample 0.69/cell® - -
patients
Zhu et al. [41] fetal bulk WGS RetroSom [41] cortical tissues (neurons) 0/1 sample 0/1 sample 0/1 sample
cortical tissues 0/1 sample 0/1 sample  0/1 sample
(astrocytes)
heart 0/1 sample 0/1 sample 0/1 sample
postnatal STG (neurons) 0/3 samples 0/3 samples  0/3 samples
STG (glia) 0/3 samples 0/3 samples  0/3 samples
STG (neurons) from SZ 2/2 samples” 0/2 samples  0/2 samples
patients
STG (glia) from SZ 0/2 samples 0/2 samples  0/2 samples
patients
heart 0/1 sample 0/1 sample 0/1 sample
fibroblast 0/2 samples 0/2 samples  0/2 samples
fibroblast from SZ 0/2 samples 0/2 samples  0/2 samples
patients
Berteli et al.  germline bulk (MDA)"  TIPseq® TIPseqHunter  sperm 17/10 samples” - -
[48] [49]
Mohner et al.  postnatal bulk RDA® customized PFC - - 5149/2
[50] pipeline samples
HIP - - 4168/2
samples
CF - - 2614/2
samples
OB - - 6765/2
samples
CB - - 4378/2
samples
Ramirez et al. postnatal bulk WGS (ONT) TLDR [52] FC from healthy 163/18 samples (L1+Alu+SVA)
[51] individuals and AD
patients
Wallace et al. newborn bulk WGS MELT [54] placenta from healthy 2/6 samples 0/6 samples  0/6 samples
[53] live births
placenta from live births 1/4 samples 0/4 samples  0/4 samples
with FGR
placenta from stillbirths ~ 2/7 samples 0/7 samples  0/7 samples
with FGR
Evrony et al.  postnatal single-cell L1-IP® customized 300 neurons from FC and 0.07/cell” - -
[38] (MDA) pipeline CN

(continued on next page)



JID: FMRE

Y. Zhang, Y. Guo, H. Jia et al.

Table 1 (continued)
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Study?® Sample age®  Sequencing strategy Computational Tissue® Estimated somatic transposition rates?
method
L1 Alu SVA
Evrony et al.  postnatal single-cell WGS scTea [40] 16 neurons from PFC 0.18/cell” [39] 0/cell 0/cell
[40] (MDA)
Upton et al. postnatal single-cell RC-seq® customized 92 neurons from HIP 13.7/cell® 0.18/cell® - -
[36] (MALBAC) pipeline [39]
22 glia from HIP 6.5/cell” 0.20/cell® - -
[39]
35 neurons from FC 16.3/cell" 0.25/cell® - -
[39]
21 neurons from HIP of ~ 8/cell” 0.14/cell® - -
AGS patients [39]
Erwin et al. postnatal single-cell SLAV-seq® customized 40 neurons from HIP 0.91/cell” - -
[37] (MDA) pipeline 23 glia from HIP 1.66/cell” - -
15 neurons from FC 0.83/cell” - -
11 glia from FC 0.78/cell” - -
Muiloz-Lopez embryonic single-cell RC-seq°, customized 6 cells from ICM of 0/cell” - -
et al. [47] and newborn (MDA) ATLAS-seq® pipeline blastocysts
Sanchez- postnatal single-cell WGS, RC-seq®, TEBreak [56] 24 neurons from HIP 0.04/cell™! 0/cell 0/cell
Luque et al. (MDA) L1-1p¢
[55]
Nam et al. postnatal clones from WGS MELT [54], 140 HSC clones 0.007/cell! 0/cell 0/cell
[57] single cells TraFiC-mem 341 fibroblast clones 0.04/cell! 0.02/cell’ 0/cell
[58], DELLY 406 normal colorectal 3.04/cell! 0.005/cell’ 0/cell

[59] and xTea

clones from colorectal

[60] cancer patients

2 Studies are first ordered by bulk vs. single-cell and then by publication year; ® To simplify, we used “postnatal” to refer to children or adult samples; ¢ HIP,
hippocampus; CN, caudate nucleus; PFC, prefrontal cortex; CB, cerebellum; FC, frontal cortex; SVZ, subventricular zone; DG, dentate gyrus; OC, occipital cortex; ICM,
inner cell mass; STG, superior temporal gyrus; CF, calcarine fissure; OB, olfactory bulb; HSC, hematopoietic stem and progenitor cells; SZ, schizophrenia; AT, ataxia-
telangiectasia; NSA, non-syndromic autism; Rett, Rett syndrome; SEGA, subependymal giant cell astrocytoma; TSC, tuberous sclerosis complex; AD, Alzheimer’s
disease; FGR, fetal growth restriction; AGS, Aicardi-Goutiéres syndrome; ¢ “-” represents that the sequencing strategy or the computational method could not detect
this type of TE; ¢ A targeted sequencing strategy was used; f Multiple displacement amplification (MDA) was used for amplifying DNAs from bulk samples. In
addition, MALBAC stands for multiple annealing and looping-based amplification cycles; 8 Two estimates were available in the original analysis or the reanalysis;
h The somatic transposition rate was corrected by PCR validation; ! The original work did not provide an estimate, so we calculated it as the total number divided

by cell counts.

Second, various targeted sequencing techniques have been devel-
oped to enrich fragments containing TE sequences and capture more
signals associated with somatic transposition in brain regions like
the hippocampus [36,37,43,50,55] and cerebral cortex [36-38,45,50]
(Table 1). Techniques like RC-seq [43] use probes to capture fragments
from active TE subfamilies and amplify them for sequencing. Other tech-
niques, such as L1-IP [38], SLAV-seq [37], and HAT-seq [19], design spe-
cific primers to enrich the insertions via PCR. Although the enrichment
substantially lowers costs by removing unrelated sequences, it generally
cannot target all active TEs from L1, Alu, or SVA, leading to false nega-
tive calls. Thus, whole-genome sequencing approaches are still actively
used.

Third, short- and long-read sequencing approaches have been co-
developed. Most somatic transposition studies, including those in
Table 1, have been performed with short-read sequencing due to its
low cost. However, long reads can easily span the whole TE inser-
tion, addressing multi-mapping ambiguity and differentiating chimeras
based on the absence of TSDs. Thus, it is well-known that long-read se-
quencing is more suitable for detecting various structural variations, in-
cluding TE insertions [65-69]. With the continuous drop in sequencing
prices, whole-genome long-read sequencing has recently been employed
to identify somatic TE insertions in the human frontal cortex for the
first time [51]. To harness the advantages of long reads while control-
ling costs, several studies have developed targeted long-read sequencing
approaches. In one study, specific gRNAs were designed to cleave tar-
get TE sequences with Cas9, followed by bulk sequencing, achieving a
read length N50 ranging from 14.9 to 32.3 kb, which substantially im-
proved the resolution of insertion structures when identifying germline
TE insertions from human cell lines [70]. Another team combined TE
enrichment with single-cell long-read sequencing to detect somatic L1
insertions in mouse breast cancer cells [71]. These techniques should
also be applicable for detecting somatic transposition in the brain.

Notably, these three dimensions—bulk vs. single-cell, whole-genome
vs. targeted, and short-read vs. long-read—can be combined as needed,
providing a versatile approach to study transposition in somatic tissues
including brain.

6. Computational advancement to identify somatic TE insertions

In parallel with the blossoming experimental developments dedi-
cated to somatic transposition, computational methods for identifying
non-reference TE insertions are also under active development, although
they often do not directly differentiate between germline and somatic
transposition. Table 2 summarizes up to 25 methods, developed or op-
timized in the past 5 years, for identifying non-reference TE insertions.
Among them, TEBreak [56], TLDR [52], and RretroSom [41] have been
used to detect somatic transposition in the human brain (Table 1),
while other brain-related studies employed customized pipelines. These
tools or pipelines are certainly also suitable for non-brain tissues. Ad-
ditionally, targeted sequencing studies capturing only one side of TE
insertions limited the use of tools requiring evidence from both sides.
Since many tools have been extensively reviewed [60,72,73], we will
only focus on their core strategies and the role of machine learning
algorithms.

Tools designed for short-read sequencing data generally rely on the
aforementioned clipped and discordant read pairs (Fig. 1d). These sup-
porting read pairs are extracted based on the read-to-genome align-
ments, followed by realignment to consensus sequences of active TE
subfamilies. Properly aligned reads are extracted and clustered by in-
sertion sites as candidate non-reference TE insertions. Two strategies
have been developed to further identify somatic transposition among
non-reference TE insertions. First, a few tools such as xTea offer a so-
matic mode that processes both experimental and control bulk samples
to retain insertions not shared as candidate somatic TE insertions [60].
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Fig. 1. Identification of somatic TE insertions. (a) Schematic of a typical non-reference TE insertion. Flanking TSDs, the TE sequence, a polyA tail, and corre-
sponding supporting read pairs/reads are shown. 1: clipped/split read pairs from short-read sequencing; 2: discordant read pairs from short-read sequencing; 3: a
clipped/split read from long-read sequencing; 4: a spanning read from long-read sequencing. (b) Two typical challenges in somatic TE insertion analyses: multi-
mapping issues caused by the multicopy nature of TEs, and artificial chimeras emerging during DNA amplification and library preparation. (c) Sequencing strategies
across three dimensions. (d) Overview of read-based and assembly-based computational methods. Note that read-based methods for long-read sequencing are anal-
ogous to those employed for short-read sequencing and are therefore omitted from this figure. (e) A random forest model. The model, integrating predictions from
multiple decision trees, is used for the classification of supporting read pairs/reads or candidate insertions. (f) A convolutional neural network (CNN) model. The
features of a potential insertion are encoded and sent to a CNN model for classification.

If the somatic mode is unavailable, both samples can be analyzed sep-
arately, and shared insertions can be manually removed. This strategy
could be extended to single-cell sequencing data, with insertions specific
to a proportion of cells identified as somatic TE insertions. Second, for
bulk whole-genome sequencing data, TE insertions with a VAF signifi-
cantly lower than 0.5 (expected for heterozygous germline mutations)
are deemed candidate somatic TE insertions. Notably, for both strate-
gies, the somatic TE calls can be examined for overlaps with databases
collecting non-reference germline TE insertions to exclude polymorphic
germline insertions (Fig. 1d, [54,74-771).

Tools designed for long-read sequencing data rely on either reads
or assemblies. Read-based tools are similar in design to those for short-

read sequencing data. Assembly-based tools compare assemblies gen-
erated from sequencing data with the reference genome to identify TE
insertions (Fig. 1d). However, these methods often cannot detect low-
frequency somatic TE insertions in bulk data, as these insertions are less
likely to be assembled.

The application of machine learning, especially deep learning tech-
niques, has shown superior performance in single nucleotide variant
(SNV) and structural variation (SV) detection, as evidenced by tools
like DeepVariant [78] and SVision-pro [79]. Similarly, despite limited
studies applying machine learning to TE insertion detection, its efficacy
in supporting read pair identification, genotyping, and insertion detec-
tion is evident. Only three tools have directly applied machine learning
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Table 2
Computational methods for identifying non-reference TE insertions in the human genome.

Tool Study?® Latest Type Read type Strategy Genotyping Notes

update

Mobster Thung et al. [81] 2022 TE Short-read Read-based No -

TEBreak Carreira et al. [56] 2023 TE Short-read Read-based VAF® -

MELT Gardner et al. [54] 2020 TE Short-read Read-based Yes -

RelocaTE2 Chen et al. [82] 2020 TE Short-read Read-based Yes -

STEAK Santander et al. [83] 2019 TE Short-read Read-based No -

AluMine Puurand et al. [84] 2021 Alu Short-read Read-based Yes -

ERVcaller Chen and Li [85] 2024 TE Short-read Read-based Yes -

MEScanner Loh et al. [86] 2019 TE Short-read Read-based - -

TIP_finder Orozco-Arias et al. [87] 2021 TE Short-read Read-based No -

TypeTE Goubert et al. [88] 2021 TE Short-read Read-based Yes -

RetroSom Zhu et al. [41] 2019 TE Short-read Read-based - Random forest is used for
extracting supporting read
pairs.

TEMP2 Yu et al. [89] 2024 TE Short-read Read-based VAP’ -

xTea Chu et al. [60] 2023 TE Short-read and Read-based VAF® Random forest is used for

long-read genotyping.

DeepMEI Xu et al. [80] 2024 TE Short-read Read-based Yes CNN is used for identifying
insertions.

INSurVeyor Rajaby et al. [90] 2024 svd Short-read Read-based Yes -

nanomonsv Shiraishi et al. [91] 2024 svd Short-read and Read-based No -

Long-read

Total ReCall Solovyov et al. [92] -€ TE Short-read Read-based -€ -

McClintock 2 Chen et al. [93] 2024 TE Short-read Read-based VAP McClintock is a meta-pipeline
integrating 12 tools.

rMETL Jiang et al. [94] 2024 TE Long-read Read-based Yes -

PALMER Zhou et al. [95] 2023 TE Long-read Read-based No -

TLDR Ewing et al. [52] 2023 TE Long-read Read-based No -

MEIGA-PAV Ebert et al. [96] 2022 TE Long-read - No -

ricME Ma et al. [97] 2023 TE Long-read Read-based -¢ -

somrit D’Costa and Simpson [98] 2023 TE Long-read Read-based No -

GraffiTE Groza et al. [99] 2024 TE Long-read Read-based and VAP’ -

assembly-based

2 Studies are first ordered by short- vs. long-read and then by publication year; ® VAF is also given when genotyping; ¢ The paper does not explicitly state whether
the method can perform genotyping; ¢ This tool could identify various SVs including TE insertions; ¢ The source code has not been released; f MEIGA-PAV relies on

several upstream tools.

Table 3

Estimates of human de novo germline transposition rates.

Study Estimation strategy” Computational method” Estimated germline transposition rates (insertion/birth)*
L1 Alu SVA
Deininger et al. [105,106] evolutionary methods - - 1/100 -
Kazazian [102] evolutionary methods - 1/100-1/8
Lietal [107] evolutionary methods - 1/28-1/2.4
Brouha et al. [108] transposition activity assay analysis - 1/33-1/2 - -
Cordaux et al. [101] evolutionary methods - - 1/20 -
Xing et al. [109] evolutionary methods - 1/212 1/21 1/916
Ewing et al. [103] evolutionary methods - 1/270-1/95 - -
Huang et al. [110] evolutionary methods - 1/108 - -
Feusier et al. [111] trio data analysis of healthy MELT [54], RUFUS [112], and 1/63 1/40 1/63
individuals TranSurVeyor [113]
Gardner et al. [114] evolutionary methods and trio data MELT [54] 1/14-1/12
analysis of patients with
developmental disorders
Belyeu et al. [115] trio data analysis of healthy Lumpy [116], Manta [117], 1/231 1/42 1/309
individuals and ASD patients Delly [59], Whamg [118],
MELT [54], GATK-SV [76,119]
Borges-Monroy et al. [30] trio data analysis of healthy xTea [60] 1/117 1/29 1/206
individuals and ASD patients
Niu et al. [120] evolutionary methods MELT [54] 1/17-1/16
Chu et al. [104] trio data analysis of birth defect xTea [60] 1/108 1/34 1/93

and childhood cancer patients

2 ASD, autism spectrum disorder; ® “-
did not include this type of TE.

to detect TE insertions in the human genome, utilizing random forests
and convolutional neural network (CNN) models (Table 2). Specifically,
RetroSom employed random forests to extract supporting read pairs,
generating a collection of decision trees based on features such as se-
quence alignment to TE consensus sequences, thereby reducing false
positives (Fig. 1e, [41]). Similarly, xTea utilized random forests for in-

»

represents that the estimation did not utilize computational methods for sequencing data; ¢ “-

»

represents that the estimation

sertion genotyping, achieving 99.7% accuracy in testing data (Fig. le,
[60]). Since CNNs are ideal for image-like data, DeepMEI encoded nu-
cleotide bases, base quality, and mapping quality as pileup images to
detect TE insertions (Fig. 1f, [80]).

The development of these computational methods largely reflects
advances in experimental techniques. For instance, the emergence of
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long-read sequencing datasets [51] has driven the need for specialized
computational tools (Table 2).

7. The rate of germline transposition

De novo germline transposition, occurring across generations, has
been extensively studied before somatic transposition and is recognized
for its pathogenic potential [100]. In humans, germline transposition
rates have been estimated using either conventional evolutionary meth-
ods or the recently developed trio-sequencing approach (Table 3). Evo-
lutionary methods rely on parameters such as the mutation rate, transpo-
sition proportion, neutral molecular clock, and evolutionary time [101-
103]. In contrast, trio-sequencing is more straightforward by directly
identifying mutations present only in offspring. However, this method
has two limitations: (1) trio cohorts often come from disease pedigrees,
introducing potential sampling bias; and (2) early somatic transposition
events at high frequency may be misclassified as germline insertions
[104].

Studies on germline transposition rates differ from those on somatic
transposition in two key ways (Tables 1, 3). First, while somatic trans-
position rate estimates vary by several orders of magnitude (Table 1),
germline rates show less variation, likely because their high frequency
makes detection easier, or their experimental and computational frame-
works are more consistent with each other. Both evolutionary and trio-
sequencing methods estimate the total germline transposition rate of L1,
Alu, and SVA at roughly one event per tens of births (Table 3). Second,
Alu transposes more frequently than L1 in the germline (Table 3), consis-
tent with its high genomic copy number, whereas L1 shows higher trans-
position rates in most somatic studies (Table 1). This discrepancy may
reflect distinct regulatory mechanisms between germline and somatic
tissues or experimental/computational differences, warranting further
investigation.

8. Conclusion and future perspectives

As early as 2005, the Gage group implemented the L1-GFP reporter
system and first hypothesized preferential transposition in the brain
and its potential benefits [12]. Over the following two decades, ad-
vances in experimental and computational methods have enhanced the
understanding of somatic transposition in three ways (Table 1). First,
short-read sequencing reproduced TE insertions in the normal human
brain [43] and confirmed earlier correlations between somatic transpo-
sition and neurological disorders (e.g., L1-GFP or PCR [19,121]). Sec-
ond, single-cell short-read sequencing provided a relatively more ac-
curate transposition rate estimate, much lower than the initial 80 in-
sertions per cell (Table 1). The previously mentioned hypothesis was
also moderated: while brain transposition rates may be low, insertions
in a few neurons could still substantially impact function due to neu-
ronal circuitry [22]. Third, single-cell short-read sequencing enabled
high-resolution temporal analysis, showing that three out of five timed
insertions occurred during early brain organogenesis [19,40,41]. Ad-
ditionally, the recent application of long-read sequencing has resolved
somatic TE insertion sequences in the human brain [51]. Both temporal
and full-sequence data facilitate interpreting functional impacts. Despite
these three lines of progress, the precise rate and function of transposi-
tion remain unclear. Discrepancies in reported rates arise from sample
heterogeneity (Table 1) and differences in experimental and computa-
tional methods. Based on previous work, we identify two promising di-
rections for future exploration.

On the experimental front, further development of low-bias, low
template-switching single-cell whole-genome amplification methods is
crucial. As mentioned earlier, somatic transposition events present in a
subset of cells are difficult to detect in bulk sequencing data, making
single-cell sequencing the preferred approach. However, amplification
methods used in previous single-cell studies, such as MDA and MAL-
BAC, are associated with underrepresented TE regions and template-
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switching chimeras [39,63]. Compared to these methods, Linear Am-
plification via Transposon Insertion (LIANTI) performs relatively better
[122]. However, this method is intrinsically complex, involving whole-
genome transcription and reverse transcription, and has not been used
in somatic transposition studies. In principle, LIANTI could be stream-
lined, as often shown in the development of sequencing library methods
(e.g., [681). A simplified version of LIANTI or other new low-bias, low-
switching methods would enable the generation of high-quality single-
cell whole-genome data.

On the computational side, a wave of deep learning-based methods
dedicated to somatic transposition detection is on the horizon. Many
previous methods have essentially wrapped up sequence alignment with
empirical rules without incorporating machine learning algorithms. As
shown by the rapid progress in structural variation detection software
development, deep learning or neural network-based approaches offer
superior performance [79,123]. Since tools specifically designed for TE
insertions generally outperform general structural variation detection
tools, deep learning-based TE insertion detectors like DeepMEI [80]
warrant further development, especially in the following four direc-
tions. First, current tools apply machine learning to only one step of
the identification process. New tools could benefit from integrating ma-
chine learning across multiple steps. Second, the lack of standardized
training and benchmark datasets hinders effective model training and
evaluation. An ideal dataset would include sufficient artificial chimeras
to enhance performance in distinguishing true signals from overwhelm-
ing false positives. Third, challenges in TE alignment necessitate the
development of novel aligners, more complete reference genomes, and
improved TE consensus sequences. Fourth, end-to-end models [124],
which directly identify TE insertions from raw sequencing data and min-
imize preprocessing and reliance on sequence alignment, offer great po-
tential.

With these evolving experimental and computational methodologies
and the rapidly declining costs of short- and long-read sequencing, the
landscape of somatic transposition in the brain and other human organs
is likely to be revealed soon. Precise detection of transposition will pave
the way for subsequent functional studies. Additionally, the study of so-
matic mutations, especially SNVs, has already become an active field,
often referred to as somatic mosaicism. Significant insights have been
gained by studying somatic SNVs, such as the early cellular division
asymmetry of the brain [125] or the rescue effect of somatic mutations
for preexisting germline mutations [126]. Novel insights are expected
from an in-depth exploration of somatic transposition. One particularly
relevant question is whether transposition could sometimes be bene-
ficial, as hypothesized two decades ago [12]. By studying both small
mutations like SNVs and large mutations like TE insertions, we can gain
a more complete understanding of how development occurs despite in-
evitable mutational perturbations.
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