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Abstract 20 

It is known that evolutionarily new genes can rapidly evolve essential roles in fundamental 21 

biological processes. Nevertheless, the underlying molecular mechanism of how they acquire 22 

their novel transcriptional pattern is less characterized except for the role of cis-regulatory 23 

evolution. Epigenetic modification offers an alternative potential possibility. Here, we 24 

examined how histone modifications have changed among different gene age groups in 25 

Drosophila melanogaster by integrative analyses of an updated new gene dataset and 26 

published epigenomic data. We found a robust pattern across various datasets where both the 27 

coverage and intensity of active histone modifications, Histone 3 lysine 4 trimethylation and 28 

lysine 36 trimethylation, increased with the evolutionary age. Such a temporal correlation is 29 

negative and much weaker for the repressive histone mark, lysine 9 trimethylation, which is 30 

expected given its major association with heterochromatin. By the further comparison with 31 

neighboring old genes, the depletion of active marks of new genes could be only partially 32 

explained by the local epigenetic context. All these data are consistent with the observation 33 
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that older genes bear relatively higher expression level and suggest that the evolution of 34 

histone modifications could be implicated in transcriptional evolution after gene birth.  35 

Key words Drosophila; H3K4me3; H3K36me3; H3K9me3; epigenetic evolution; new gene 36 

evolution 37 
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Introduction 40 

New gene refers to a novel genetic locus, a physically distinct and derived segment of DNA, 41 

which pops out throughout the whole history of life (Long et al., 2003). Emerging evidence 42 

from both animals and plants has shown that new genes play diverse functional roles in 43 

development or reproduction (Long et al., 2003; Chen et al., 2013). These genetic novelties 44 

usually originated either via duplication of preexisting genes or de novo from non-coding 45 

DNAs (Kaessmann, 2010; Chen et al., 2013; Andersson et al., 2015). Possibly because 46 

duplication may lead to the incomplete inclusion of the original regulatory sequences and de 47 

novo origination may be associated with suboptimal regulatory elements, younger genes tend 48 

to be expressed in a more tissue-specific manner compared to older genes (Zhang et al., 49 

2012; Schlotterer, 2015). For example, human-specific new genes are often only transcribed 50 

in two or three tissues with moderate abundance while genes predating vertebrate split are 51 

highly transcribed in more than 20 tissues (Zhang et al., 2012).  52 

The transcriptional enhancement demonstrated by the increase of expressional breadth and 53 

abundance suggests that the underlying regulatory changes are associated with the age of 54 

genes. Accordingly, numerous studies have uncovered that the evolution of cis-regulatory 55 

elements in new genes, especially promoters, often contributes to the adjustments of 56 

expression patterns by co-opting or modifying preexisting sequences (Zaiss & Kloetzel, 57 

1999; Fablet et al., 2009; Xie et al., 2012; Wu & Sharp, 2013; Sorourian et al., 2014; Ruiz-58 
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Orera et al., 2015). By contrast, although epigenetic mechanisms are also critical to gene 59 

expression regulation (Kouzarides, 2007; Li et al., 2007; Brown & Bachtrog, 2014), little is 60 

known about their roles in expressional evolution of new genes. It was not until very recently 61 

that two important epigenetic mechanisms, i.e., DNA methylation and histone modifications, 62 

were found to be implicated in the transcriptional divergence of duplicated new genes and 63 

their parental copies (Arthur et al., 2014; Keller & Yi, 2014; Wang et al., 2014).  64 

Herein this study, we updated the age-dating data of Drosophila melanogaster (D. 65 

melanogaster) which were generated previously (Zhang et al., 2010) and examined how 66 

epigenetic marks evolve with the increase of gene ages. Since the general functionality of 67 

DNA methylation in Drosophila remains controversial (Lyko et al., 2000; Raddatz et al., 68 

2013; Zhang et al., 2015), we focused on histone modifications. Given the availability of 69 

public data, we analyzed three widely studied marks: tri-methylation of lysine 4, 9 and 36 of 70 

Histone 3, i.e. H3K4me3, H3K9me3 and H3K36me3, respectively. H3K4me3 is 71 

predominantly associated with locus activation and enriched around the transcription start site 72 

(TSS) (Greer & Shi, 2012; Taniguchi & Moore, 2014). Similarly, H3K36me3 is also 73 

associated with active gene transcription and mainly deposited on the gene body region 74 

(Wagner & Carpenter, 2012; Pu et al., 2015). Reversely, H3K9me3 is mainly involved in the 75 

formation of large-scale heterochromatin domain, but also appears to be capable of silencing 76 

euchromatic genes (Ebert et al., 2006; Kouzarides, 2007). 77 
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Because older genes appear to be widely and abundantly transcribed compared to younger 78 

genes (Zhang et al., 2012; Schlotterer, 2015), it is logically expected to observe the 79 

overrepresentation of active histone marks and underrepresentation of repressive histone 80 

marks in the former group relative to the latter group. In order to test this hypothesis, we 81 

analyzed genome-wide histone modification data of D. melanogaster head considering the 82 

data availability. We first confirmed that in this specific organ older genes show higher 83 

expression level and genes with higher expression level are associated with significantly 84 

more active marks (H3K4me3 and H3K36me3) and slightly less repressive mark 85 

(H3K9me3). We then discovered that H3K4me3 and H3K36me3 marks indeed show more 86 

enrichment in older genes relative to younger genes in terms of both binding intensity and 87 

binding coverage. Moreover, the increase of active marks present a significant linear 88 

correlation with the gene age. Similarly, the decrease of repressive chromatin mark 89 

H3K9me3 shows a weaker temporal pattern compared to active marks, possibly because most 90 

of H3K9me3 marks localize in the constitutive heterochromatin region (Ebert et al., 2004). 91 

Additional analyses in larva revealed exactly the same pattern suggesting the wide 92 

applicability of this age-associated pattern. Thus, our findings suggest that histone 93 

modification may be also subject to fine-tuning by recruiting more and more active histone 94 

marks after the birth of new genes.  95 

 96 
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Materials and methods 97 

Gene age dating 98 

We followed our previous pipeline and dated D. melanogaster coding genes along the 99 

Drosophila genus tree (Zhang et al., 2010). In brief, for each gene annotated in Ensembl 100 

version 78 (Flicek et al., 2014), we took advantage of UCSC whole genome syntenic 101 

alignment and inferred the phylogenetic distribution of its orthologs. Then, based on the 102 

parsimony rule, we made an inference on when this gene originated. However, since the 103 

genome-wide synteny may degenerate for species outside of the Drosophila genus due to the 104 

vast divergence, we can only trace gene origination to the common ancestor of Drosophila 105 

genus 63 million years ago (Hedges et al., 2006).  106 

In order to cover an even longer evolutionary period, we followed the widely used 107 

phylostratigraphy strategy (Tautz & Domazet-Loso, 2011; Yang et al., 2015), which only 108 

relied on homology of a single gene rather than a long synteny. We classified genes shared by 109 

Drosophila genus into five age groups based on the homolog distribution information in the 110 

following outgroup species including Anopheles gambiae, Aedes aegypti, Bombyx mori, 111 

Tribolium castaneum and Apis mellifera. We chose these insects due to the corresponding 112 

taxonomy breadth and relatively better genome assembly quality. Homolog information is 113 

directly retrieved from Ensembl Metazoa release 26 (Flicek et al., 2014). A gene is deemed to 114 
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belong to a specific age branch by following the parsimony rule implemented in the 115 

phlostratigraphy strategy (Tautz & Domazet-Loso, 2011; Yang et al., 2015). 116 

 117 

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) data analyses 118 

We retrieved the D. melanogaster ChIP-seq data from modENCODE project (Celniker et 119 

al., 2009). We focused on samples from heads of both male and female D. melanogaster 120 

adults and examined three types of histone modifications, namely H3K4me3, H3K36me3 and 121 

H3K9me3. The corresponding modENCODE dataset IDs are 5098, 5091 and 4933, 122 

respectively. The reason that we focused on head samples only is simply due to the data 123 

availability across different profiling platform (see next section). To further test whether the 124 

pattern we discovered is robust across different samples, we also analyzed whole body data 125 

of D. melanogaster larvae 3
rd

 instar. The modENCODE dataset IDs are 5096, 4950 and 4939, 126 

corresponding to H3K4me3, H3K36me3 and H3K9me3, respectively. 127 

By following the previous practice (Karlic et al., 2010), we used the well-developed 128 

strategy in RNA-sequencing (RNA-seq) quantification field in order to generate a gene level 129 

statistic of histone modification enrichment based on ChIP-seq data. First, we built a feature 130 

annotation file (gtf) as routinely performed in RNA-seq. Herein, we defined a gene region as 131 

the gene body and the corresponding flanking 1 kb region accounting for the uncertainty in 132 

the annotation of untranslated regions, a TSS region as the upstream 1 kb and downstream 1 133 
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kb around the TSS, and all the remaining regions as the non-overlapping background (Fig. 134 

S1). The reason that we extended the TSS region with 1 kb plus is: the H3K4me3 signal or 135 

the tag density tends to reach a sharp peak around the TSS and then descends down until at 136 

least 1 kb (Barski et al., 2007; Cheng & Gerstein, 2012). For genes with more than one TSS, 137 

the 2 kb windows are merged if these TSS are not far from each other with the distance 138 

smaller than 2 kb; otherwise, the final quantification is averaged across different TSS. We 139 

constructed a pseudo gene annotation gtf file by including all the gene regions and remaining 140 

intervals. Analogously, we built a pseudo TSS annotation file. In the case of histone 141 

modifications distributing broadly such as H3K36me3 and H3K9me3, the gene gtf file is 142 

used in the subsequent analyses. By contrast, for H3K4me3 histone modification which is 143 

prominently concentrated around the TSS (Barski et al., 2007), the TSS gtf file is taken.  144 

In order to differentiate reads derived from paralogous duplicates which may share high 145 

sequence similarity, we then implemented the Kallisto package (Bray et al., 2015). Given the 146 

gene or TSS gtf files, we extracted the corresponding sequences from the latest Flybase dm6 147 

genome assembly by gffread command wrapped in Cufflinks (Trapnell et al., 2010), which 148 

were further indexed and quantified by Kallisto. We trimmed raw reads with Trimmomatic 149 

with the remaining fragment not less than 32 basepairs (bp) (Bolger et al., 2014). We mapped 150 

all trimmed reads to the genome via Novoalign and randomly assigned multi-mapping reads 151 

(reads mapping equally well to more than one genes) with the ‘-r Random’ parameter 152 

(http://www.novocraft.com). By comparing all mapped reads with the previously built index, 153 

http://www.novocraft.com/
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Kallisto reassigned multi-mapping reads via a statistical expectation-maximization procedure 154 

based on both unique-mapping reads and multi-mapping reads onto the same feature (gene or 155 

TSS) and then inferred the raw read count for each feature.  156 

ChIP-seq is different from RNA-seq where the background signal quantified by the control 157 

or mock experiment should be subtracted from the case experiment. So, we normalized the 158 

case and the control data by calculating the scaling index with the NCIS package after 159 

transforming the alignment files (in SAM format) into genomic interval files (in BED format) 160 

with samtools and bedtools (Li et al., 2009; Quinlan & Hall, 2010; Liang & Keles, 2012). In 161 

case the mock signal is stronger than the case for a gene or TSS of interest, the read count is 162 

reset as 0. After normalization and subtraction, we calculated log2basedFPKM (Fragments 163 

Per Kilobase of gene or TSS per Million mapped reads) after adding a tiny offset 0.01 to 164 

compensate zero values. So, the minimum expression will be log2(0.01) or -6.7 . 165 

Across three type of histone modification data, we divided each age group into three equal-166 

size classes based on log2FPKM, i.e., ‘bottom’, ‘middle’ and ‘top’. For each class and each 167 

type of histone modification, we calculated the Spearman’s σ and P between the median 168 

binding intensity and age class, which is followed by Bonferroni correction.  169 

To compare new genes with the nearest old genes, we divided all genes into the old and 170 

new gene group including entries predating Drosophila genus split (branch -4 to branch 0) 171 

and postdating Drosophila genus split (branch 1 to branch 6), respectively. For every focal 172 
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new gene, we treat its TSS as an anchor and search for a closest TSS that is associated with 173 

an old gene. Some genes encode multiple TSS and we chose the shortest TSS pair.  174 

 175 

RNA-seq data analyses 176 

We retrieved D. melanogaster adult female and male head RNA-seq data from 177 

modENCODE project with IDs of 3083 and 3084 (Celniker et al., 2009). Similarly, we 178 

trimmed raw reads with Trimmomatic (Bolger et al., 2014). We then took the widely used 179 

pipeline: to map reads against the genome via HISAT and to generate gene level 180 

quantification via cufflinks (Trapnell et al., 2010; Kim et al., 2015). To be comparable with 181 

the ChIP-seq data of modENCODE, which is from heads of a mixture of male and female 182 

adults, we took the average of the individual FPKM values of male and female heads. Finally, 183 

we transferred the raw value to log2FPKM after adding an offset 0.01.  184 

 185 

Chromatin immunoprecipitation (ChIP) coupled with tiling microarrays (ChIP-chip) data 186 

analyses 187 

ChIP-chip offers at least one magnitude lower dynamic range compared to ChIP-seq 188 

because of the inherent difference between the array-based and sequencing-based platforms 189 

(Marioni et al., 2008), it is thus less capable of binding intensity quantification. Considering 190 
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such a shortcoming, we took advantage of ChIP-chip datasets to analyze a different feature, 191 

i.e., histone binding coverage across genes. Specifically, we obtained ChIP-chip raw data 192 

from NCBI GEO database with the accession number GSE22438 (Edgar et al., 2002; Wood 193 

et al., 2010). Samples are from heads of female D. melanogaster adults, which are 10 days 194 

and 40 days old, respectively. Since the pattern is essentially the same in either 10-day or 40-195 

day heads, we only presented the result on the basis of 10-day heads in the main text. Raw 196 

case and control CEL files are loaded into Starr package in Bioconductor (Gentleman et al., 197 

2004; Zacher et al., 2010). Probe logarithmic densities are normalized with loess method by 198 

getRatio command and exported by writewig command (Zacher et al., 2011). Probe 199 

sequences are extracted through featureData command in Starr package. All 25 bp probes are 200 

aligned to the dm6 assembly with bowtie and no mismatch is allowed (Langmead, 2010). 201 

Only uniquely mapped probes are reserved for downstream analyses in order to differentiate 202 

paralogous duplicates. Peak calling procedures are conducted with Chipotle by changing the 203 

step size from 250 bp to 100 bp to achieve a higher sensitivity (Buck et al., 2005). 204 

Similar to ChIP-seq data analyses, we next performed gene level analyses. Given the probe 205 

length of 25 bp and the spacer length of 15 bp on the tiling array, genes with unique probe 206 

coverage less than 80% (20 probes per kb) were filtered out. For the remaining genes, we 207 

defined a parameter called peak coverage to quantify the extent of binding which is simply 208 

the overall percentage of sequence of interest covered by ChIP-chip binding peaks. Herein, 209 

the target region or ‘sequence of interest’ is defined as we did in ChIP-seq data analyses: 2 kb 210 
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windows around TSS covered by peaks for H3K4me3 marks and gene body with flanking 1 211 

kb for H3K36me3 and H3K9me3 (Fig. S1).   212 

To get a more comprehensive view of binding coverage changes across different age 213 

groups, we further divided all genes into four or five classes based on the genome-wide 214 

distribution of the peak coverage. In the case of H3K4me3 or H3K36me3, we first specified 215 

two classes, i.e., ‘0’ and ‘100%’ because a significant proportion of genes are not bound or 216 

completely bound, respectively (Fig. S2). The remaining genes are equally divided into three 217 

classes, i.e., ‘low’, ‘moderate’ and ‘high’. By contrast, only a few genes are completely 218 

bound by H3K9me3 peaks (Fig. S2). Thus, we only specified the ‘0’ class followed by 219 

dividing the remaining genes into three equal-size classes (‘low’, ‘moderate’ and ‘high’). For 220 

each class, we calculated Spearman's σ to quantify its relationship with gene age. Bonferroni 221 

correction is added to account for the multiple testing issue. 222 

 223 

Results 224 

Young genes are lowly transcribed and histone modification are correlated with transcription 225 

for fly head 226 

We followed our previous methodology and dated Flybase annotated protein-coding genes 227 

along the insect phylogenetic tree (Zhang et al., 2010; Yang et al., 2015) (Fig. 1; Materials 228 

and methods). Considering the data availability, we took Drosophila head as a major model 229 
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system to examine the correlation between transcriptional level and histone modification 230 

level across different age groups. However, although it is known that older genes tend to 231 

show higher expression level than younger genes (Zhang et al., 2012; Schlotterer, 2015) and 232 

histone modification is correlated with transcriptional regulation (Martin & Zhang, 2005; Li 233 

et al., 2007), these two patterns may not always hold for any samples (e.g. Drosophila head). 234 

In order to lay a solid foundation for subsequent analyses, we first tested these assumptions. 235 

We reanalyzed both histone modification data (ChIP-seq) and transcriptome data (RNA-236 

seq) generated by the modENCODE project (Celniker et al., 2009). As introduced previously, 237 

we focused on two active modification marks, H3K4me3 and H3K36me3, and one repressive 238 

mark, H3K9me3. To serve as an overall statistic of histone modification enrichment on TSS 239 

(for H3K4me3) or gene body (for H3K36me3 or H3K9me3), we calculated log2FPKM 240 

(Fragments Per Kilobase of gene or TSS per Million mapped reads) after accounting for 241 

sequence mapping uncertainty between recently duplicated paralogous genes (Materials and 242 

Methods). In parallel, we quantified gene-level transcriptional intensity as log2FPKM too 243 

(Materials and Methods). As expected, consistent with previous reports (Zhang et al., 2012; 244 

Schlotterer, 2015), older genes show higher transcriptional level compared to young genes 245 

with the median transcriptional level significantly correlated with the gene age (Spearman’s σ 246 

= -0.95, P < 2.2 × 10
-16

, Fig. 2A). Moreover, histone modification intensity is indeed 247 

significantly correlated with transcriptional level across all three marks (P < 2.2 × 10
-16

, Fig. 248 

2B–D). Notably, the Spearman’s σ is lowest in case of H3K9me3 (|-0.26|) compared to 249 
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H3K4me3 (0.69) and H3K36me3 (0.47) suggesting the limited gene-level regulatory role of 250 

this repressive mark, which is consistent with its major role in heterochromatin (Ebert et al., 251 

2004; Ebert et al., 2006).   252 

 253 

Older genes show higher binding intensity of active marks relative to younger genes 254 

Then, we examined how binding intensity evolves by comparing different age groups. In 255 

order to reach a higher sensitivity over different binding intensity ranges, we divided genes in 256 

each age group into three classes of equal sizes, i.e.,  ‘top’, ‘middle’ and ‘low’ binding 257 

classes. Consistent with the trend that older genes bear broader and stronger expression 258 

relative to younger genes (Fig. 2), the active marks including H3K4me3 and H3K36me3 are 259 

gradually overrepresented with the increase of gene age, while the repressive mark, 260 

H3K9me3 is gradually underrepresented in this process (Fig. 3). The trend is roughly the 261 

same across top, middle and bottom binding intensity categories although the last category 262 

could not reach the statistical significance because majority of genes in many age groups are 263 

not bound at all. Moreover, active marks show strong correlation between median intensity 264 

and evolutionary age in top and middle binding categories (|σ| > 0.8, P < 0.01) while 265 

H3K9me3 shows relatively weaker correlation in the corresponding categories (0.3 <σ < 0.8, 266 

P > 0.01, Fig. 3). Such a difference is consistent with the pattern that H3K9me3 binding 267 

intensity is less correlated with transcriptional level (Fig. 2).  268 
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 269 

Epigenetic context partially predicts the histone modification levels of new genes 270 

Next we are wondering whether the underrepresentation of active histone marks of new 271 

genes is actually a characteristic of new genes themselves or a characteristic of the chromatin 272 

environment in the region where new genes originate. To address this issue, we examined 273 

histone marks of the nearest old genes (branch -4~0) relative to the focal new genes (branch 274 

1~6) (Materials and methods). 275 

we found that the binding intensity of new genes tend to be positively correlated with the 276 

neighboring old genes across all three types of histone marks and the correlation is 277 

statistically significant for multiple age groups (Spearman’s P < 0.05, Bonferroni correction; 278 

Fig. 4A). However, such a correlation does not necessarily mean the aforementioned histone 279 

modification pattern of new genes is fully explained by the local epigenetic context. Actually, 280 

we directly performed a pairwise comparison between new genes and nearest old genes and 281 

found that new genes are statistically significantly less bound by both H3K4me3 and 282 

H3K36me3 marks across all age groups (Fig. 4B). Even for the repressive histone mark, 283 

H3K9me3, which are less correlated with the expression level (Fig. 2), new genes tend to be 284 

bound more compared to nearby old genes (Fig. 4B). 285 

 286 
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Overrepresentation of active marks in older genes also occurs with respect to the binding 287 

coverage  288 

So far, our ChIP-seq based analyses demonstrate that the intensity of histone modification 289 

marks is positively correlated with gene age, i.e., younger genes are often significantly 290 

depleted with active histone modification marks, which could not be fully explained by the 291 

local epigenetic context. However, it remains unknown how the binding coverage changes 292 

during evolution. More than that, a pattern discovered based a single platform, i.e., ChIP-seq, 293 

may be generated due to some technical artefacts. To address these two issues, we further 294 

analyzed ChIP-chip datasets profiling heads of D. melanogaster female adults (Wood et al., 295 

2010). After removing multi-mapping probes, we called binding peaks and calculated the 296 

binding coverage or peak coverage, which is defined as the overall percentage of sequences 297 

of interest covered by all peaks (Materials and Methods). Based on such a parameter, we 298 

examined how the binding coverage differs across different gene age groups. 299 

Consistent with the age-associated temporal pattern of binding intensity, older genes tend 300 

to be bound by more H3K4me3 active marks (Fig. 5A). Actually, except for the low and 301 

moderate peak coverage groups, the proportion of all other three categories are statistically 302 

correlated with the evolutionary age (|Spearman’s σ|≥ 0.81, P < 0.05, Table 1). Exactly like 303 

the case of H3K4me3, the H3K36me3 active marks show the pattern where older genes are 304 

more extensively modified (Table 1, Fig. S3). Thus, older genes are associated with various 305 
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types of active marks across larger percentage of TSS or gene bodies compared to younger 306 

genes.  307 

In contrast to the active marks H3K4me3 and H3K36me3 but consistent with the result of 308 

binding intensity analyses (Fig. 3), the repressive mark H3K9me3 only shows limited 309 

correlation with gene age. Actually, only the moderate group declines with the increase of 310 

gene age (Spearman’s σ = -0.84, P = 0.018, Table 1; Fig. 5B), while all the other three 311 

categories appear irrelevant with gene age (Table 1). Such a pattern is again consistent with 312 

low correlation between H3K9me3 binding intensity and gene expression (Fig. 2). 313 

 314 

Discussion  315 

To be preserved in the genome, new genes especially incompletely duplicated new genes or 316 

de novo new genes must acquire their own expression patterns by either co-opting preexisting 317 

regulatory context or evolving such context de novo. From this perspective, how cis-318 

regulatory regions of new genes evolve has been attracting wide interest for more than one 319 

decade (Zaiss & Kloetzel, 1999; Fablet et al., 2009; Xie et al., 2012; Wu & Sharp, 2013; 320 

Sorourian et al., 2014; Ruiz-Orera et al., 2015). However, as introduced previously, although 321 

epigenetic modifications are also important in regulating gene expression and are well studied 322 

in various biological processes, it is rarely explicitly studied in the new gene origination 323 

process. Nevertheless, some exciting results just emerged as demonstrated in a few very 324 
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recent studies on how epigenetic evolution accompanied transcriptional divergence of 325 

duplicated genes (Arthur et al., 2014; Keller & Yi, 2014; Wang et al., 2014). Different from 326 

these pioneering works, we directly examined how various histone modifications evolve 327 

dynamically across hundreds of million years by classifying genes into more than 10 different 328 

age groups (Fig. 1).  329 

Across ChIP-seq and ChIP-chip platforms, we discovered analogous patterns where both 330 

the coverage and intensity of active histone modifications, H3K4me3 and H3K36me3, are 331 

positively correlated with gene age (Figs. 3, 5). By contrast, there is a relatively weaker trend 332 

that H3K9me3 marks decline in the older gene groups compared to the young gene groups. 333 

Actually, since it is uncertain whether H3K9me3 preferentially binds gene body or TSS, we 334 

performed a TSS-centric analysis for H3K9me3 as did for H3K4me3 and rediscovered an 335 

analogous weak age-associated pattern (Fig. S4). Such a contrast between active and 336 

repressive marks is consistent with the previous reports where H3K4me3 and H3K36me3 are 337 

mainly associated with genic regions while H3K9me3 tends to be deposited to constitutive 338 

heterochromatins (Ebert et al., 2006). More importantly, although our analyses are mainly 339 

based on 10-day Drosophila heads, the age-associated pattern is reproducible in both 40-day 340 

Drosophila heads (Figs. S3, S5) and larvae whole body (Fig. S6), suggesting that the pattern 341 

is widely applicable. Thus, these serials of data strongly support our initial hypothesis which 342 

proposes the evolution of histone modification accompanies expressional evolution of new 343 

genes (Zhang et al., 2012).  344 
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Further analysis showed that histone modification level of young genes was positively 345 

correlated with their nearest old genes (Fig. 4A), suggesting that new genes’ histone 346 

modification was affected by their chromatin environments. However, the histone 347 

modification level is significantly different between new genes and their nearest old genes 348 

(Fig. 4B), demonstrating that the age-associated pattern of new genes is not only a 349 

characteristic of their chromatin environment but also of themselves. Actually, RNA-based 350 

duplicated new genes or retrogenes always lost their preexisting regulatory sequence and they 351 

can be fused with the host gene in the insertion site as a new chimeric gene (Vinckenbosch et 352 

al., 2006). De novo originated new genes generally overlap with a preexisting gene or 353 

hitchhike a bi-directional promoter (Xie et al., 2012). As for DNA-based duplicated new 354 

genes, majority of them are linked in tandem (Zhou et al., 2008), which often leads to the 355 

dosage gain effect (Chang & Liao, 2012). Thus, across all these three major mechanisms of 356 

new gene origination, new genes can co-opt preexisting regulatory context and thus show 357 

some similarity with the neighboring old gene with respect to histone modification binding. 358 

However, similar to retrogene and de novo gene, DNA-based duplicated gene generated by 359 

partial duplication may also have incomplete promoter region, which needs to be evolved. 360 

Thus, the regulation of new genes could be generally suboptimal, which causes the overall 361 

underrepresentation of active marks. In this regard, either duplicated new genes or de novo 362 

new genes are subject to subsequent epigenetic evolution, which leads to the age-dependent 363 

pattern discovered here.   364 
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When we established the pattern, we carefully handled the multi-mapping issues, i.e., read 365 

or probe mapping uncertainty due to the sequence similarity between young duplicates. In 366 

ChIP-seq analyses we made a quantification via expectation-maximization based on all reads 367 

derived from the same gene or the same TSS; while in ChIP-chip analyses we simply 368 

excluded genes with at least 20% regions covered by multi-mapping probes (Materials and 369 

methods). These two different strategies revealed qualitatively similar pattern (Figs. 3, 5) 370 

suggesting the robustness of our result. More than that, the multi-mapping issue mainly exists 371 

for the youngest age group (5/6) enriched with recent duplicates (Yang et al., 2015). Even if 372 

we removed this age group, the pattern will largely hold.   373 

Such a robust age-associated pattern suggests that new genes may gradually accumulate 374 

active histone modifications through sequence alterations after their birth. However, this 375 

pattern could be also explained by preferential loss of young genes with relatively less active 376 

marks. These genes may be only lowly or narrowly transcribed and thus have a low 377 

pleiotropy, which means a relatively higher tolerance of loss-of-function (LoF) mutations 378 

(Yang et al., 2015). This alternative hypothesis would predict roughly constant upper-bound 379 

or maximum binding intensity across different age groups, which is incompatible with the 380 

data (Figs. 3, S6). Thus, biased retention of new genes with active marks could not serve as a 381 

major mechanism to create the age-associated pattern observed in our data.  382 
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If genes gradually adjust their histone marks with increase of ages, the next question would 383 

be whether this epigenetic rewiring directly contributes to transcriptional evolution. Although 384 

evolution of cis-regulatory elements appear to directly lead to transcriptional enhancement 385 

(Zaiss & Kloetzel, 1999; Fablet et al., 2009; Xie et al., 2012; Wu & Sharp, 2013; Sorourian 386 

et al., 2014; Ruiz-Orera et al., 2015), our correlation-based analyses could not establish a 387 

direct causality between epigenetic modification evolution and transcriptional evolution of 388 

new genes. Although the significance of epigenetic mechanism for gene regulation is widely 389 

appreciated (Kouzarides, 2007; Li et al., 2007; Brown & Bachtrog, 2014), it has been argued 390 

that recruitment of histone modification marks are merely a downstream response of 391 

transcription factor binding (Zhou et al., 2014). In other words, changes of histone 392 

modification binding could be viewed as a passive layer of gene regulation. From this aspect, 393 

it is more likely that new genes evolve cis-regulatory regions first and then recruit active 394 

histone modification marks to further enhance their transcription. Nevertheless, regardless of 395 

the correlation and causality, our evolutionary and functional genomic analyses 396 

unambiguously support that epigenetic context of genes continuously remodels during their 397 

evolutionarily aging process. Such a change may be directly or indirectly involved in the 398 

transcriptional difference between old and young genes.   399 
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 584 

 585 

Fig. 1 Age distribution of D. melanogaster protein coding genes. Divergence times within 586 

Drosophila genus and those between Drosophila genus and other insects are based on 587 

Tamura et al. (2004) and TimeTree (Hedges et al., 2006), respectively. The age of branches 588 

is represented by the number above each branch. The count of protein coding genes 589 

belonging to a specific age branch annotated in D. melanogaster is given in parentheses. 590 

Thus, '-4' represents the oldest branch or the oldest gene age group in D. melanogaster and '6' 591 

represents the youngest group. For example, -4 (7635) indicates that 7635 protein coding 592 
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genes in D. melanogaster are shared by all major insect orders included in the figure, while 6 593 

(44) stands for a group of 44 protein coding genes specific to D. melanogaster which 594 

originated in the last few million years. 595 

 596 

Fig. 2 Transcriptome and histone modification in fly head. (A) Distribution of transcriptional 597 

level across different age groups is shown as boxplot where the black lines and dots mark the 598 

median and outliers, respectively. The Spearman’s test is performed between median 599 

expressional levels and corresponding evolutionary ages. (B–D) Both H3K4me3 and 600 

H3K36me3 are positively correlated with gene expression level, while H3K9me3 is 601 

negatively correlated with gene expression level. Both transcription and histone modification 602 

abundance is quantified as log2FPKM. Across all four panels, the Spearman’s σ is shown 603 

with P always smaller than 2.2 × 10
-16

. 604 

 605 

Fig. 3 Older genes tend to bear more H3K4me3, H3K36me3 and less H3K9me3 histone 606 

modification marks with respect to binding intensity measured by log2FPKM. Across three 607 

marks, the binding profile data across each gene age group were divided into three classes of 608 

equal size ordered by log2FPKM, namely, ‘top’, ‘middle’ and ‘bottom’. For each class, 609 

boxplots were made across different gene age groups to summarize the distribution. The 610 

Spearman’s σ (upper lane) and the corresponding P (lower lane, Bonferroni correction) is 611 
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presented except the ‘bottom’ class where the median of many age groups are at the 612 

minimum level (log2(0.01)), namely, many genes are not bound at all in the corresponding 613 

age groups. 614 

 615 

Fig. 4 The histone modification levels of new genes are positively correlated with nearest old 616 

genes while new genes show less H3K4me3 and H3K36me3 modification level, and more 617 

H3K9me3 modification level. For each type of histone modification marks and each new 618 

gene age groups (1~5/6), we calculated the Spearman’s rank correlation between new genes 619 

and nearest old genes (Panel A), which is followed by Boxplot view and pairwise Wilcoxon 620 

signed-rank test (Panel B). Asterisks represent different levels of significance after 621 

Bonferroni correction with ‘*’, ’**’ and ‘***’ denoting ‘P < 0.05’, ‘P < 0.01’ and ‘P < 622 

0.001’ respectively. The solid black line in Panel A shows the linear fitting result.  623 

 624 

Fig. 5 Older genes tend to be bound by more H3K4me3 and less H3K9me3 histone 625 

modification marks across a broader region. (A) For each TSS, we examined how much the 626 

upstream 1 kb and downstream 1 kb window was covered by H3K4me3 binding peaks. 627 

Given the overall percentage, we divided genes into five coverage groups 628 

(0/low/moderate/high/100%, respectively; see Materials and methods). (B) This panel 629 

follows the same convention as Panel A except that the coverage is calculated based on the 630 
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gene body with upstream 1 kb and downstream 1 kb window and the ‘100%’ class were 631 

merged into ‘high’ class since there are so few genes fully covered by H3K9me3 marks (Fig. 632 

S2).  633 
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Table 1 Correlation between gene age and the percentage of peak coverage of histone 635 

modification. 636 

  0 Low Moderate High 100% 

H3K4me3 σ 

P 

0.81 

0.041 

0.38 

1 

-0.54 

0.53 

-0.92 

2.3×10
-3

 

-0.90 

4.4×10
-3

 

H3K36me3 σ 

P 

0.94 

<2.2×10
-16

 

-0.81 

0.041 

-0.55 

0.52 

-0.90 

4.4×10
-3

 

-0.92 

2.3×10
-3

 

H3K9me3 σ 

P 

0.26 

1 

-0.70 

0.12 

-0.84 

0.018 

0.47 

0.71 

 

For each type of histone modification and each class of peaks coverage, we calculated the 637 

Spearman’s σ (upper lane) and the corresponding P (lower lane, Bonferroni correction) 638 

between percentage of peaks coverage and the gene age (Materials and methods). Notably, 639 

for H3K9me3, there are not many entries with ‘100%’ coverage and thus a few genes with 640 

‘100%’ coverage are grouped into the ‘high’ class (Fig. S2). 641 
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