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ABSTRACT The evolutionary mechanism, fate and function of duplicate genes in various taxa have been
widely studied; however, the mechanism underlying the maintenance and divergence of duplicate genes in
Danio rerio remains largely unexplored. Whether and how the divergence of DNA methylation between
duplicate pairs is associated with gene expression and evolutionary time are poorly understood. In this
study, by analyzing bisulfite sequencing (BS-seq) and RNA-seq datasets from public data, we demonstrated
that DNA methylation played a critical role in duplicate gene evolution in zebrafish. Initially, we found
promoter methylation of duplicate genes generally decreased with evolutionary time as measured by
synonymous substitution rate between paralogous duplicates (Ks). Importantly, promoter methylation of
duplicate genes was negatively correlated with gene expression. Interestingly, for 665 duplicate gene pairs,
one gene was consistently promoter methylated, while the other was unmethylated across nine different
datasets we studied. Moreover, one motif enriched in promoter methylated duplicate genes tended to be
bound by the transcription repression factor FOXD3, whereas a motif enriched in the promoter unmethy-
lated sequences interacted with the transcription activator Sp1, indicating a complex interaction between
the genomic environment and epigenome. Besides, body-methylated genes showed longer length than
body-unmethylated genes. Overall, our results suggest that DNA methylation is highly important in the
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differential expression and evolution of duplicate genes in zebrafish.

Gene duplication, which occurs in almost all types of life forms
(Kondrashov et al. 2002), is the main source of evolutionary novelty
(Ohno 1970) and morphological complexity (Freeling and Thomas
2006). Most teleost, including Danio rerio, experienced genome dupli-
cation three times, with the most recent genome duplication dating to
320-400 MYA (Van de Peer and Meyer 2003; Jaillon et al 2004;
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Kasahara et al. 2007; Hoegg et al. 2004). The exceptions are common
carp and rainbow trout (Xu et al. 2014; Berthelot et al. 2014), both of
which have undergone a fourth duplication. Several models of the
emergence, maintenance, and evolution of duplicate gene copies have
been proposed (Innan and Kondrashov 2010). Duplicate genes can be
preserved through subfunctionalization, neofunctionalization, and dos-
age selection (Conant and Wolfe 2008; Hahn 2009). Nucleotide sub-
stitution, cis-regulation, and epigenetic modifications, influence the
expression and functional evolution of duplicate genes (Hahn 2009;
Betran et al. 2006; Wang et al. 2014; Chang and Liao 2012).

DNA methylation, an epigenetic DNA modification that occurs at
cytosine residues, is involved in various important biological processes,
such as the regulation of repetitive element expression, the development
of early embryogenesis, cell type differentiation, genomic imprinting,
and X-inactivation (Bird 2002; Bestor 2000; Smith et al. 2015; Edwards
and Ferguson-Smith 2007). Promoter methylation is often associated
with transcription repression, whereas intragenic methylation likely
controls expression from alternative promoter regions and hinders
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transcription elongation (Suzuki and Bird 2008; Maunakea et al.
2010; Bell and Felsenfeld 2000; Kass et al. 1997). Notably, epige-
netic silencing of duplicates may aid in functional divergence
(Rodin and Riggs 2003), and DNA methylation patterns play an
important role in duplicate gene evolution (Widman et al. 2009;
Keller and Yi 2014; Feng et al. 2010).

Previous study in humans demonstrated that DNA methylation
exhibits striking degrees of evolutionary conservation (Keller and Yi
2014). DNA methylation divergence of duplicate genes is significantly
correlated with gene expression divergence (Keller and Yi 2014). Dupli-
cate genes show highly consistent patterns of DNA methylation diver-
gence across multiple tissues due to different frequency of motifs (Keller
and Yi 2014). Since zebrafish has been subjected to one more round
whole genome duplication (WGD) compared to humans, we wondered
whether the aforementioned patterns of DNA methylation of duplicate
genes in human were different in zebrafish. In this study, we investigated
the relationship between duplicate gene evolution and DNA methylation
divergence. For example, we observed how the methylation level changed
with evolutionary time (Ks), whether gene expression was coupled with
DNA methylation, and how methylation divergence contributed to ex-
pression divergence. Since DNA methylation is important for early em-
bryogenesis (Li et al. 1992), we also investigated DNA methylation
patterns of duplicate genes during early developmental stages. All these
results provided an answer to how DNA methylation influenced evolu-
tion of duplicate genes in zebrafish.

MATERIALS AND METHODS

Identification of duplicate genes

All the corresponding nucleotide and protein sequences of zebra-
fish were retrieved from Ensembl (http://asia.ensembl.org/index.
html). To search potential zebrafish duplicate gene pairs,
we initially used BLASTP (Altschul et al. 1997) with default
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parameters. Briefly, each protein sequence was compared against
every other protein sequence in the zebrafish genome. Our criteria
for whether two genes were considered a gene pair were proposed by
Gu et al. (2002): (1) the alignable region between the two protein
sequences should be longer than 80% of the longer region; (2) the
identity between the two sequences (I) should be I = 30% if the
alignable region is longer than 150 amino acids, and I = 0.01
n + 4.8 L0320 + exp(=L/1000)] for all other proteins, where n = 6,
and L is the alignable length between the two proteins (Rost 1999).
Based on these initial pairings, gene families were created by perform-
ing the Markov Cluster Algorithm (http://micans.org/mcl/) until no
additional groups shared a member. For each gene family, we aligned
the protein sequences using MUSCLE (Edgar 2004). Using the yn00
module in PAML (Yang 2007), we calculated Ks pairwise, and selected
the gene pair with the lowest Ks. We calculated the ratio of nonsynon-
ymous to synonymous substitutions per site (Ka/Ks) of these duplicate
genes using PAMIL4 (Yang 2007) to examine the functional constraints.
A Ka/Ks ratio (w) > 1 indicated positive selection, whereas a
ratio < 1 indicated functional constrain. An LRT was conducted to
determine whether Ka/Ks between the duplicate pairs was significantly
lower than 0.5 (Zou et al. 2012; J. Wang et al. 2013). The Codeml
program or PAML4 was run twice [model = 0 (fixing o = 0.5),
and model = 1] for each pair. Then twice the log likelihood difference
of these two runs was compared to a Chi-square distribution with df = 1
(Yang 1998). The false discovery rates (FDR) were controlled using the
Benjamini-Hochberg method (Klipper-Aurbach et al. 1995) with an FDR
of 5%. w < 0.5 (P < 0.01) may indicate evolutionary constraint.

Comparing the functional domains of duplicate genes

We used Interproscan (Jones et al. 2014) to identify the domains
for duplicate genes by scanning the protein domains and important
sites to determine any potential functions. The functional divergence
of the duplicate copies was detected by comparing the domains. We
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Figure 2 Ks and Ka/Ks distributions. (A) Histogram showing the Ks values for duplicate gene pairs. (B) Distribution of Ka/Ks. The red and purple

dashed lines represent Ka/Ks values of 0.5 and 1, respectively.

attributed two genes to the same functional group if they contained the
same domains. The pairs that had distinct domains belonged to differ-
ent functional groups.

Analysis of DNA methylation data
Methylation data for egg, sperm, testis, and six stages (16-cell, 32-cell,
64-cell, 128-cell, 1k-cell, and germ ring), were obtained from NCBI with
accession number PRJNA188516, which used Bisulfite sequencing
(BS-seq). Genomic DNA (R100 ng) spiked with 0.5% unmethylated
cl857 Sam7 Lambda DNA (Promega) was used to construct the DNA
library provided a measure of the sum of the rates of nonconversion,
and thymidine to cytosine-sequencing errors (Jiang et al. 2013). The
Zv9 reference genome was downloaded from Ensembl (http://asia.
ensembl.org/index.html). Trimmomatic was performed to trim the
reads with default parameters. We mapped the filtered paired-end
reads against the reference genome using Bismark_v0.13.0
(Krueger and Andrews 2011) with the following stringent parameters:
-n2-1 60-e 100-X 600. A promoter was defined as 2 kb upstream
from the transcriptional start site, and the gene body comprised the
remainder of the gene region. On one hand, we estimated methylation
level as my/(m; + u;), which represents the probability that CpG i is
methylated in a sample (Jiang et al. 2013).

In addition, we applied another way to evaluate a region was
methylated or unmethylated (Takuno and Gaut 2012, 2013). The meth-
ylation level of CpGs was calculated by

flcg

Peg = (n;g >Pig(1_ch)ncg_i

i=Mg

where P is a proxy of DNA methylation level (Takuno and Gaut
2012, 2013). p, is the proportion of methylated cytosine residues at
CpG sites across the whole genome. ., and ., represents the num-
ber of cytosine residues at CpG sites with >2 coverage, and the
number of methylated cytosine residues at CpG sites in a gene, re-
spectively. We kept only those genes with sufficient CpG information
(neg = 20) and genes for which 60% of cytosine residues were cov-
ered by at least two reads (Takuno and Gaut 2012). When the Pcg
value is low, the region was more densely methylated than expected at
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random. We use Pcg to define the region is methylated or unmethy-
lated using the criteria of Pcg = 0.05 or Pcg = 0.95, respectively.

RNA-seq data analysis

Available paired end FASTQ sequence files for sperm, egg, 1000 cells,
and germ ring were obtained from NCBI with accession number
PRJNA188516 (Jiang et al. 2013). RNA-seq data of 16-cell, 32-cell,
and 128-cell were downloaded with accession number PRJNA127881
(Aanes et al. 2011). RNA-seq data of testis was obtained with SRA
number SRR1695730. Each read was separately mapped against Danio
rerio Zv9 references (http://asia.ensembl.org/info/data/ftp/index.html)
using the software Tophat (Trapnell ef al. 2009, 2012). Reads that were
longer than 48, and had no more than one multihit, were retained for
next procedure. Considering that the high sequence similarity of du-
plicated genes might lead to the multiple alignment of sequencing
reads, read counts used in expression analysis was based on a subset
of uniquely aligned reads. For each gene, the normalized expression
level was measured by fragments per kilobase of exon per million
fragments mapped (FPKM) using Cufflinks (Trapnell ef al. 2012).

To evaluate expression specificity of promoter methylated and
unmethylated genes, we calculated H(g), the Shannon entropy, which
is expressed in bits of the expression the vector of gene g. This practice is
based on FPKM. The specificity score was definedas 1 — H(g) / log,(N),
where N represents the number of points in time or the types of tissue
(Pauli et al. 2012).

N
H(g) = = ZPilogzpi P; :gi/gsum
i=1
where g is the gene name; g; is the FPKM for the ith tissue; and gy, is
the sum of N tissues.

DNA methylation divergence
DNA methylation divergence was calculated as previously described
(Keller and Yi 2014; Kim and Yi 2006). We defined promoter methyl-

ation divergence (PMD) as (Mp; — Mpy) / (Mp; + Mp,), where
Mp; and Mp, are the average promoter methylation levels for the first
and second gene, respectively. The methylation level was normalized
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Figure 3 Patterns of relationship between DNA methylation and evolutionary age (Ks). DNA methylation data from the 16-cell stage are
divided into 20 groups by Ks. (A) The correlation between the average promoter methylation level and Ks for duplicate gene pairs
(Pearson’s R = —0.72, P < 5.46E—04). (B) Gene body methylation shows a positive correlation with Ks than does promoter methylation
(Pearson’s R = 0.58, P = 7.53E—03). Error bars represent 95% confidence intervals. (C) "Recent” duplicate pairs were single copy in
grass carp but duplicates in zebrafish (n = 85), which is relative younger than remaining duplicate pairs. Duplicates are significantly
(P < 0.05) less methylated than young duplicates in promoters. (D) Duplicates are more methylated than young duplicates in gene

body.

to the overall methylation level of the pair. Similarly, gene body methylation
divergence (GMD) was calculated as (Mg, — Maa) / (M1 + Ma).

Specificity index of DNA methylation

The stage-specific patterns of DNA promoter methylation were de-
scribed using the stage specificity index, which was previously used to
assess gene expression (Yanai ef al. 2005). The specificity index was
defined as follows:

Z:l:l(l - mi/mmax)

n—1

SMI =

where m; is the methylation in stage i, 71, is the maximum meth-
ylation level for a gene across stages, and n is the number of stage.
Thus, a larger SMI indicates a more stage-specific pattern of DNA
methylation. We also calculated the divergence of SMI between du-
plicate gene pairs as (SMI; — SMIL,) / (SMI; + SML,).

Motif-enrichment analysis

We used MEME (Bailey et al. 2006) to identify DNA motifs that were
distinguished within the promoter regions of consistently methylated
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vs. unmethylated duplicate genes. Considering the large number
of sequences, we defined the promoter region as the 1000 bases
upstream of the transcription start site (TSS), based on a previous
study (Keller and Yi 2014). MEME was used to identify the
10 most significantly different motifs in consistently methylated
promoters by generating motif position specific priors (PSPs).
Then, MAST (Bailey and Gribskov 1998) was used to calculate
the frequency of these motifs in the methylated and unmethylated
promoter regions. Finally, we used TOMTOM (Gupta et al. 2007)
to identify the transcription factor families to which the motifs
bound.

Statistical analysis

In this study, R3.1.1 for windows was used for most statistical
analysis. Pearson’s correlation coefficients were used to measure
correlations between methylation and evolutionary time. We used
the partial correlation with the “ppcor” package in R to examine
the relative correlation between methylation level and gene ex-
pression (Y. Wang et al. 2013; Kim and Yi 2006). Multiple testing
was corrected by applying the FDR method implemented in R
(Storey and Tibshirani 2003).

£ G3-Genes| Genomes | Genetics



I 16cell
05

0.4

Frequency
o
w

o
(X

0.1

0.0 -
0.0 02 04 06 08 10

I 16-cell

0.0 02 04 06 08 1.0
P

cG

Figure 4 Frequency distribution of Pcg as a proxy of CG methylation level. The Lower Pcg represents higher methylation levels. (A) Frequency
promoter-methylated is similar with promoter-unmethylated genes. Methylation data shown are from 16-cell. (B) The majority of genes tend to be

gene-body methylated.

Data availability

All the corresponding nucleotide and protein sequences of zebra-
fish were retrieved from Ensembl (http://asia.ensembl.org/index.
html). Methylation data for egg, sperm, testis and six stages:
16-cell, 32-cell, 64-cell, 128-cell, 1k-cell and germ ring were
obtained from NCBI with accession number PRJNA188516.
Available paired end FASTQ sequence files for sperm, egg,
1,000 cells and germ ring were obtained from NCBI with
accession number PRJNA188516. RNA-seq data of 16cell,
32cell and 128cell were downloaded with accession number
PRJNA127881. RNA-seq data of testis was obtained with SRA
number SRR1695730.

RESULTS

Generation, quality control, and filter of the duplicate
gene dataset

Using a refined version of a previously published procedure,
2440 pairs of duplicate genes with 0.01 < Ks = 2 were obtained
in the zebrafish genome (Figure 1). The distribution of Ks is shown
in Figure 2A. The number of duplicate genes tended to increase to a
peak value, when the Ks value was 1.6. We hypothesized that the
third round WGD (whole genome duplication) may cause this peak.
Under a substitution rate 0of 4.13 x 10~ substitutions per silent site
per year (Fu et al. 2010), WGD may indicate the birth of duplicate
genes ~387 MYA, which was during the time of the third genome
duplication event that occurred in the stem lineage of teleost fish
(infraclass Teleostei) after the divergence from nonteleost ray-
finned fish (Nakatani et al. 2007; Jaillon et al. 2004; Hoegg et al.
2004; Amores et al. 1998,2011; Taylor et al. 2003; Van de Peer 2003;
Meyer and Van de Peer 2005). Such consistency suggests the high
quality of our duplicate gene dataset.

The ratio of nonsynonymous substitutions per nonsynonymous
site (Ka) to synonymous substitutions per synonymous site (Ks)
was calculated for duplicate gene pairs to assess natural selection
(Yang 2007); the results are shown in Figure 2B. A likelihood
ratio test (LRT) of Ka/Ks (w) confirmed that the w of 1851 of
2440 (75.9%) pairs were significantly < 0.5 (Supplemental Mate-
rial, Table S1, adjusted P-value < 0.05), suggesting that both
copies of duplicate gene pairs were under purifying selection.
That is, genes compiled in our duplicate gene dataset are largely
functional.

2G3-Genes| Genomes | Genetics
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Young duplicates tended to be hypermethylated in
promoter regions

The average promoter DNA methylation levels were calculated for nine
datasets (egg, sperm, testis, 16-cell, 32-cell, 64-cell, 128-cell, 1k-cell, and
germ ring), which exhibited a significant negative correlation with
evolutionary time measured by Ks. The relationship for a 16-cell embryo
(Pearson’s correlation coefficient, R = —0.72, P < 5.46E—04) is pre-
sented in Figure 3A, and the relationship for the other stages are pre-
sented in Table S2. However, the average gene body methylation levels
exhibited a positive correlation with evolutionary time (Pearson’s cor-
relation coefficient, R = 0.58, P = 7.53E—03) (Figure 3B for 16-cell
embryos, Table S2 for other stages), indicating that the younger gene
tended to have a lower promoter methylation level but higher gene
body methylation level.

Interestingly, these trends were obvious when we compared meth-
ylation levels of “recent” duplicate pairs, which were single copy in grass
carp, but duplicates in zebrafish (n = 85), to those of duplicate pairs
(Table S3). Duplicates are significantly (P < 0.05) less methylated
than young duplicates in promoters (Figure 3C), while more methyl-
ated than young duplicates in gene bodies (Figure 3D).

To examine this further, we compare the Ks of methylated and
unmethylated genes. First, we calculated Pcg for the promoter region
and gene body of each gene, and used the distribution of Pcg as a proxy
for the CG methylation level (see Materials and Methods). Only those
genes with sufficient CG information (n.; = 20), and genes for which
60% of cytosine residues were covered by at least two reads were kept
(n = 2111) (Takuno and Gaut 2012, 2013). The distribution of P of
promoter and gene body were both bimodal, indicating that CG meth-
ylation is not randomly distributed (Figure 4 and Figure S1). The result
showed that Ks ratios were significantly higher in body-methylated
genes than in unmethylated genes (Table S4, adjusted P value < 2.85
E—12). In contrast to that, promoter-methylated genes exhibited lower
Ks than unmethylated genes (Table S4, adjusted P value < 4.51E—05).

Methylation divergence of duplicate genes changed
along an evolutionary timescale

To study the dynamics of DNA methylation divergence within duplicate
gene pairs, we calculated the relative promoter methylation divergence
(PMD) and gene body methylation divergence (GMD) (see Materials
and Methods). We observed that the PMD and Ks were positively
correlated (Figure 5A for 16-cell, Pearson’s R = 0.61, adjusted
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Pvalue < 4.65E—03, Figure S2 for other stages). Compared with older
duplicate gene pairs, the younger pairs tended to exhibit similar levels
of promoter methylation; however, significantly negative correlation
was found between the GMD and Ks (Figure 5B, 16-cell, Pearson’s
R = —0.82,adjusted P value < 4.65E—03, Figure S3 for other stages).
We also calculated the stage specificity index of DNA promoter meth-
ylation (SML, see Materials and Methods), which provided insights into
the relative strength of methylation across six early embryo stages (16-
cell, 32-cell, 64-cell, 128-cell, 1k-cell, and germ ring). A negative cor-
relation was demonstrated between the relative divergence of SMI and
Ks (R = —033,P < 2.12E—15).

Negative correlation between promoter DNA
methylation and gene expression level

DNA methylation is known to regulate gene expression in mammals and
plants, whereby higher levels of promoter methylation silence down-
stream gene expression (Weber et al. 2007; Zemach et al. 2010a). We
hypothesized that a high level of promoter DNA methylation of
duplicate promoters is also associated with low expression of dupli-
cate genes in zebrafish. To explore the relative association of pro-
moter methylation and gene body methylation with expression
level, we evaluated partial correlation using the “ppcor” package

A

4 «  16-cell

LogFPKM

T
00 02 04 06 08 10
Methylation level of promoter

in R (see Materials and Methods). Indeed, expression levels were
significantly, negatively correlated with promoter methylation
levels (Figure 6, P < 3.62E—03), whereas no significant corre-
lation was established between the gene body methylation levels
and expression levels.

We are wondering whether differential promoter methylation of
duplicate gene pairs resulted in different gene expression. Compared
with the promoter methylated genes, unmethylated gene exhibited a
significant higher expression level (Table S5, two sample ¢-test, adjusted
P value <1.43E—02).

Moreover, we used Shannon entropy to measure the breadth of
expression. The result indicated that the promoter-unmethylated
genes exhibited significantly lower Shannon entropy, suggesting a
broader expression than promoter-methylated genes (Figure 7A,
4.98E—03).

Enrichment of specific DNA motifs in consistent
methylated promoters

Why do promoter-methylated genes show lower gene expression level?
One explanation is that some motifs in the promoter region bind to
transcription repressors (Keller and Yi 2014). To test this hypothesis,
we identified duplicate gene pairs where one copy was consistently
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Figure 6 The relationship between methylation and expression level (Log FPKM). (A) Promoters of duplicate genes are heavily methylated
initially, and gradually lose DNA methylation cross evolutionary age. (B) In contrast, gene-body DNA methylation exhibits an increasing pattern.
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promoter-methylated while the other copy was promoter-unmethylated
across the nine samples we studied; 665 duplicate gene pairs fulfilled
our criteria (Table S6).

Here, we examined the mechanism that helps distinguish the two
promoters. We used a weight matrix finding algorithm (MEME)
(Bailey et al. 2006, 2010), and a motif search tool (MAST) (Bailey
and Gribskov 1998), to identify the 10 most significant motifs that
discriminated between methylated and unmethylated groups. One
motif occurred significantly more often in the unmethylated group
than in the methylated groups (P < 5.86E—8, Fisher’s exact test),
whereas another motif occurred significantly less often (P <
3.55E—6, Fisher’s exact test) (Figure 7B). Interestingly, the motif
enriched in the methylated promoters contained the regions binding
to Forkhead box D3 (FOXD3) that were previously identified by
TOMTOM (Gupta et al. 2007). FOXD3 has been reported to func-
tion as a transcriptional repressor (Guo et al. 2002; Yaklichkin
et al. 2007). By contrast, the motif enriched in the unmethylated
promoters included Sp1 binding sites, which prevent local DNA
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methylation (Brandeis et al. 1994). The difference in the methyl-
ation levels of promoters may be explained by the presence of
these motifs.

Body-methylated genes showed longer length than
body-unmethylated genes

Previous studies revealed different predictions between body methyl-
ation and gene length or exon. For instance, in Arabidopsis thaliana,
body-methylated genes were significantly longer than unmethylated
genes, and have more exons (Takuno and Gaut 2012). Genes with
higher C,G were significantly longer than those with lower C,G
(Zeng and Yi 2010).

In this study, our data also support these predictions. We found
the mean length of the body-methylated genes was significantly
longer than the mean length of unmethylated genes (37,582.78 vs.
7655.52 bp for 16 cell, Table S7 for other stages, two sample ¢-test,
adjusted P value < 2.2e—16). Figure 8 shows the distribution of
gene length.

Duplicate Genes in Zebrafish | 3587


http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032243/-/DC1/TableS6.xlsx
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032243/-/DC1/TableS7.xlsx

E ' 1 i H ' H i '
' ' ] : : : : : ]
! ' ' ' ' ' 1 ' '
w4 o i 9}, 04,0 9ot el oo i o |
¢ L e 1 0 1 T & T L& LT 0o
1 L = e A T T e T T T T T
1 1 R S (T NI R ] i e 0 el
= : : : ] ' : ' ' ]
E IllI:I.I:I.I!I.IEI
[~ i ] H 1 ' ' ' ] ]
N Taat BE BN RE BN EE B8 BN
S THHHBHHB
3 | ' : i ] : : ! !
e , i
S0 R0 B0 L B0 SL BL BN 3
< i P by o 3 oe b g b o R
: :!:g:g:g:g:!:!:!
i gtgtagipgrgrtagrgtgtoa
.  © © o o © o o ©
& =
°© ©®© 9 g8 88 8 8 °
IIIIIIIIIIIIIIII[A
7z % % 9t % % % 9
B B % v % C Y %
- v ﬂ//¢ % >

%
Figure 8 The distribution of gene length. The blue box represents body-
unmethylated genes, and the red box represents body-methylated
genes. Mean length of the body-methylated genes was signifi-

cantly longer than the mean length of unmethylated genes (adjusted
Pvalue < 2.2e—16).

Methylation divergence is associated with

functional divergence

Furthermore, we attempted to assess the relationship between functional
divergence and methylation in zebrafish.

First, we used the DAVID Functional Annotation tool to assess
enrichment of gene ontology (GO) terms. Functional annotation
clustering results of the 2440 pairs of duplicate genes revealed that the
majority of these genes were enriched in the following biological
process categories: immunoglobulin-like, hexose catabolic process
and protein catabolic process, and glycolysis. These genes may be
involved in degradation, including the breakdown of sugar and
proteins; post-translational modification; and transcription factor
activity.

Second, we used Interproscan (Jones et al. 2014) to predict the
functional domains of the duplicate genes (Table S8). In the 2440 pairs,
181 pairs had no functional domains in either paralog. This result could
potentially be explained by the fact that the paralog might not have
been fully studied. For the remaining 2259 pairs, of which at least one
copy had domain annotation, both copies in 414 pairs had different
functional domains. Within 626 duplicate gene pairs that showed con-
sistent promoter divergence and had functional domains, 169 pairs
showed function divergence. However, within 1633 duplicate gene
pairs that did not show consistent promoter divergence, only 245 pairs
exhibited function divergence. The two-sample test for equality of pro-
portions with continuity correction was implemented in R 3.1.2 and a
significant difference (P < 2.2e—16) was found. Our results may in-
dicate that methylation divergence may be associated with functional
divergence.

DISCUSSION

DNA-mediated duplication, that is, the duplication of chromosomal
segments containing genes, has been widely studied (Lynch and Conery
2000; Taylor et al. 2003). DNA duplication is a critical source of genetic
innovation that plays a key role in evolution (Assis and Bachtrog 2013).
After duplication, genes are subject to a series of processes, including
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expression and functional divergence. In our study, we performed a
comparative analysis of the association of epigenetic modification, such
as DNA methylation, with the evolutionary divergence of duplicate
genes.

The promoter regions of younger duplicate genes are
generally methylated

It was known that most newly born genes may degrade to pseudogenes.
Epigenetic silencing of duplication might play an important role in
shifting the loss vs. gain equilibrium (Rodin and Riggs 2003). In our
study, we noticed that the promoter regions of younger duplicate genes
tended to be methylated, whereas those old duplicates were generally
unmethylated (Figure 3, C and D). Remarkably, a similar pattern has
also been found in humans (Keller and Yi 2014). Thus, it is possible that
newly duplicated genes have the same expression pattern, and are
epigenetically silenced in a tissue- or stage-complementary manner,
which protects each of the duplicates from “pseudogenization”
(Rodin and Riggs 2003).

Evolutionary conservation of gene body methylation
According to previous studies, gene bodies consistently exhibit higher
levels of methylation compared with promoters (Jjingo et al. 2012).
Moreover, our study showed that gene body methylation was signifi-
cantly correlated with Ks (Pearson’s R = 0.58, Figure 3B). In humans,
gene-body DNA methylation and Ks are negatively correlated, but
this correlation is extremely weak (Pearson’s R = —0.06) (Keller
and Yi 2014). Gene body methylation is reportedly conserved be-
tween plants and animals (Zemach et al. 2010b; Sarda et al. 2012;
Zeng and Yi 2010), whereas a study in rice suggests that gene body
divergence is associated with Ks (Y. Wang et al. 2013). However,
GMD in zebrafish did not exhibit a discernible relationship with Ks.
This result suggested that the epigenetic modification of the gene
body might be subject to Ks, whereas GMD between duplicate genes
was relatively conserved.

Differential gene body DNA methylation covaries with gene length
between duplicate genes. It has been hypothesized that body methylation
has a functional role, perhaps in transcriptional accuracy or splicing
efficiency. Consistently, we demonstrated that methylated duplicate
genes have longer gene length.

Methylation of promoters, rather than that of gene
bodies, is associated with transcription levels

In mammals, DNA methylation of promoter regions is a repressive
mark, and depresses gene expression (Zemach et al. 2010b; Elango and
Yi 2008; Boyes and Bird 1992; Shen et al. 2007), whereas intragenic
methylation is associated with gene expression by controlling the ex-
pression from alternative promoter regions (Maunakea et al. 2010).
Additionally, in plant genomes, including A. thaliana (Arabidopsis),
Oryza sativa (rice), Populus trichocarpa (poplar), and Chlamydomonas
reinhardtii (green algae), gene-body methylation tends to influence
transcription level (Feng et al. 2010; Zemach et al. 2010b; Takuno
and Gaut 2013). Even a single CpG within a transcription-factor-bind-
ing site potentially influences gene regulation (Ziller et al. 2013). In-
deed, we demonstrated that promoter methylation was significantly
correlated with gene expression (Figure 6), whereas no significant cor-
relation was observed between gene body methylation and expression
level in zebrafish. Meanwhile, promoter-unmethylated genes exhibited
significantly lower Shannon entropy, suggesting a broader expression
than promoter-methylated genes. The relationship between DNA
methylation and transcription level potentially varies between taxa.
Consistent with previous studies that raised the notion of “expression

£ G3-Genes| Genomes | Genetics


http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.116.032243/-/DC1/TableS8.xlsx

reduction model” and “gene dosage balance,” our results indicated that
heavy promoter methylation following the duplication event may offset
the expression level to avoid detrimental mutations (Rodin and Riggs
2003; Chang and Liao 2012).

Remarkably, the motif-enrichment results revealed that the Fork-
head-related transcriptional regulator FOXD3 is present at a sig-
nificantly higher frequency within the methylated promoters. A
previous study of gene expression has suggested that FOXD3 is
involved in a negative autoregulatory mechanism (Chiang et al.
2001; Dottori et al. 2001). Moreover, our study demonstrated that
promoter methylation divergence of duplicate genes also affects
gene expression, indicating that epigenetic divergence potentially
influences transcription levels. Comparative genome analysis re-
garding duplicate genes supports the hypothesis that differential
DNA methylation and epigenetic changes play a role in protecting
duplicate genes from pseudogenization (Rodin et al. 2005; Cortese
et al. 2008).

Genetic influences on DNA methylation variation
Previous study has proved that DNA methylation variation is influ-
enced by genetic and epigenetic changes that are often stably
inherited and can influence the expression of nearby genes
(Eichten et al. 2013). In this study, we also tried to assess the influ-
ence of nucleotide divergence, especially at C nucleotides and CpG
di-nucleotides between duplicates, on DNA methylation in zebra-
fish. First, we tried to identify duplicates that display differential
methylation but have little to no sequence variation. These could
be more likely candidates of true epigenetic variation. However,
since zebrafish went through the third genome duplication 320-
400 MYA, duplicate genes diverge greatly in sequence. Then, we
carefully assessed the C content of promoter regions between dupli-
cate pairs with a customized Perl script. On the one hand, we nar-
rowed down a set of duplicate genes that have diverged greatly in
their C content. We found that 356 duplicate pairs (Table S9) show
differential methylation, possibly because the C content was differ-
ent, which was caused by divergence at the nucleotide level.

Our study gives strong support to the idea that epigenetic divergence
of duplicate genes affects gene expression and functional divergence of
duplicate genes.
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